Drivers of Extreme Rainfall During the Extratropical Transition of Hurricane Matthew (2016)
Scott W. Powell and Michael M. Bell, Colorado State University, Fort Collins, CO
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1. Introduction
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- Hurricane Matthew paralleled the

southeastern U.S. coast on 7-9 October
2016. On 8 and 9 October, it dumped
over 250 mm of rain--and up to over 400
mm locally--along a swath located in the
coastal plain of South and North Carolina
and Tidewater Virginia. The heaviest rain
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Domains used: 18-6-2 km, with no
cumulus parameterization in inner

possibility that cold air damming east of the Appalachian Mountains could
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4. Simulated Rainfall with and Without Mountains 5. Mesoscale Dynamics in the Rainbands 6. Conclusions
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Top left) Observed WSR-88D reflectivity and simulated reflectivity in CTRL and
NoMTNS runs from 30 to 45 hours after initialization.
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- In a very small portion of the rainband
(about 6 km across), conditional symmet-
ric instability could have been released as
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Bottom left) Temperature gradient calculated across cross-sections A (red) and B
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