Relevance of Large-Scale Vertical Motions and Cumuliform Buoyancy to MJO Convective Onset

Scott Powell University of Washington, Seattle

American Geophysical Union Fall Meeting, San Francisco, 14 December 2015

Supported by grants AGS-1059611 and AGS-1355567 from the National Science Foundation, grant DE-SC0008452 from the U.S. Dept. of Energy, and grants NNX10AH70G and NNX13AG71G from the National Aeronautics and Space Administration.

Hypothesis: Convection passively responds to changes in the large-scale environment.

14 December 2015

Timescale of MJO Convective Build-up

What duration is the transition from suppressed to widespread, deep convection?

Powell and Houze (2013, 2015a) in JGR

TRMM 20dBZ echo tops: 9N–9S; 60–100E

TRMM 20dBZ echo tops: 9N–9S; 60–100E

Moistening by Cumulonimbi

Do moderately deep clouds moisten the troposphere during transition periods, or does moistening permit observed cloud deepening?

Powell and Houze (2015b) in JGR

Powell and Houze (2015b)

Powell and Houze (2015b)

The Circumnavigating MJO (Kelvin wave?)

How does LS upper-tropospheric divergence relate to convection rooted in a warm, moist boundary layer?

Updraft Buoyancy within Simulated Cumulonimbi

What causes sudden onset of transition periods?

Powell, submitted to JAS

Virtual Dry Static Energy (VDSE): Updraft minus Environment

Blue = Cloud updraft, on average, is negatively buoyant in its environment

Virtual Dry Static Energy (VDSE): Updraft minus Environment

Blue = Cloud updraft, on average, is negatively buoyant in its environment

Conclusions

• 3–7 day build up in cloud population during transition periods prior to MJO convective onset.

- During transition periods, moderately deep clouds make environment conducive to deep convection.
- Circumnavigating wave has impacts on lowwavenumber ω anomalies of O(0.01 Pa s⁻¹).

• Changes in vertical velocity cause small changes of O(0.1K) in tropospheric temperature below 500 hPa.

• Small changes in environmental temperature dramatically alter mean buoyancy of cloud updrafts in 700–850 hPa layer.

End

Extra Slides

Model grid points separated into 4 categories:

- Precipitating
- Nonprecipitating liquid
- Anvil
- Environment

14 December 2015

Model grid points separated into 4 categories:

- Precipitating
- Nonprecipitating liquid
- Anvil
- Environment

14 December 2015

Composited between 700–850 mb.

14 December 2015

29

Powell and Houze (2013)

Powell and Houze (2013)

14 December 2015

ERA-Interim

WRF (V3.5.1) Specifications

- 1–20 October and 4–20 November
- ERA-I forcing with NOAA RTG High-Res SST
- 2km grid spacing, 38 vertical levels
- Microphysics: Thompson
- Radiation: RRTMG
- PBL: MYJ
- Monin-Obukhov surface layer physics
- Noah LSM