Large-Scale Vertical Motions and MJO Convective Onset
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2. Large-Scale Convective/Environmental Variability

1. Introduction

3. Circumnavigating Signals of Velocity Potential and Vertical Velocity

Date

Date

Powell and Houze (2013) document three MJO
events during DYNAMO/AMIE.

Ground-based radar and rawinsonde data from
AMF2 detected a 3—7 day build-up of convection
and humidity prior to MJO convective onset at
Gan.

On this poster, we first show that such spatially
limited datasets contain ~30-day variability in
convective behavior and dynamic/thermodynamic
tropospheric structure that is representative of
the same on the large-scale.

A mechanism linking upper-tropospheric velocity
potential anomalies, observed to circumnavigate
the tropics during DYNAMO/AMIE (Gottschalck et
al. 2013), to MJO convective onset is then
proposed using the ground-based radar and large-
scale forcing derived from rawinsonde data
(Johnson et al. 2015).
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Probability of ETH detection
- _ Time series of the normalized probability of 20 dBZ

Probability distribution of detecting a 20 dBZ echo echo top height for a domain enclosed by 9°S, 9°N

top height (ETH) for all convective echoes between 60°E, and 100°E and smoothed to two-day intervals

9°S, 9°N, 60°E, and 100°E from 1 October 2011 — during the interval 1 October — 31 December.

15 January 2012.

i Black line = Mode of ETH distribution
Conclusions Red line = Median of ETH distribution
- Evolution of convective depth as seen by S- Red error bars = 95% confidence bound of red line
_ , P y Dashed black lines = Date of first MCS observed by S-
PolKa consistent with that on the large-scale. 5% aurine ceah MO convecive cvam:

- Two modes of convection observed. White box separates modes of convective depth (see

- Transition from shallower mode (congestus) top left).
to deeper mode (deep convection) occurred Blue (purple) line at bottom: Time series of 3B421
over 2—8 day period prior to MJO onset. (2A25) domain-averaged rain rate smoothed to 2-day

- Areal coverage of congestus increases sharply

intervals.

for 2—4 days followed by a decrease when

areal coverage of deep convection rapidly

increases at MJO onset.

- Results are consistent with Powell and Houze
(2013), Ruppert and Johnson (2015).
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Clear circumnavigating dry signals of x;s,' and low-wavenumber w,,," are [
detected. They are associated with a wavenumber 1 structure of zonal wind.

The associated vertical velocity response is consistent with mass continuity.

Smaller scale (higher zonal wavenumber than 1.5) features may be important

'Domain-averaged 3B42 time series of rain rate

correlates with S-Pol derived rain rate at p = 0.56 with

95% confidence interval 0.25<p <0.77.3B42 a

nd

2A25 time series correlate at p =0.91 (0.76 < p £0.97).
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the histogram of detected 20 dBZ echo top
heights between 9°S — 9°N and 60° — 100°E.
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Time Series of Large-Scale Zonal Wind, Temperature, and
Humidity in ERA-Interim (60—-100°E; 9°N-9°S)

100 - - - r‘— 100 prr—y~ — v YT Y W
150‘ ! \' 1 150 . '
200 f 1 W"® — 200} 1 @2
250 | i < 250¢f y )
I | | 7) i ] 15 X
300 10 g 30 B
400 | |, > 400 ; &
@© —5 O
500 | £ 500 S
600 | - 600} 4 3
L 15 £ 1 ©
700 | = 700§ 1.8
10 g -15 5
— 850 - I N 850} - =
o L ! -15 I ] -20
o 1000 ' 1000 -
7 100F - o 100
o 150} - S 150} :
9 200t - 0.6 q!_J 200t | 40 ’\o\
Q. 250t - 9O 250} 1N, <
300 | 1 o4 300} ' g
T — 20
400 | | o, S 400f | §
2 9 —10 ©
500 | S 500f >
—0 & —0 T
600 | 2 600} I=
5 —-10
—-028 Z
700 E 700 P
04 2
e -30 ©
850 i I = 850} | I &J
] | M6 @ _ | ™40
=l ar & ool () RH'
1-Oct  15-Oct 1-Nov 15-Nov ~ 1-Dec 15-Dec  1-Jan 1-Oct  15-Oct 1-Nov 15-Nov  1-Dec 15-Dec  1-Jan
. - — - Left: Pearson correlation coefficients p (in
68-787F; 3'N-3"S | 60-100°E; 9'N-9°5 center of each inequality expression) and

95% confidence intervals between time

series of u’, T/, and g*’ as derived by Gan

/ y’ | 0.85<0.87<0.89 | 0.55<0.61<0.66
77 | 0.68<0.71<0.73 | 0.52<0.56<0.59
g* | 0.80<0.81<0.82 | 0.61<0.64<0.66

rawinsonde data and by ERA-I. Columns are
labeled by the domain used to composite

4. State of the Large-Scale Environment

during Shallow to Deep Transition

Hovmollers (left): All composited

Brief background: We classified 6-hour blocks prior

@)
0 “ ” o« oy ” 15 Nov | g
between 3°N and 3°S. White dots to MJO convective onset as “Cg", “transition”, or g é
represent longitude where y,.,' is a “Cb” periods. During “Cg” periods, congestus mode 10 Nov |- :
minimum at each date/time convection (echo tops 3—7 km) observed by S-PolKa s ©
near Gan did not grow into deep cumulonimbi > Nov i = é
: . = e
. _ (tops > 9 km). During “Cb” periods, > 26% of S
Hovmodllers of Filtered w,,, (bottom : " : 310ct -
/ < il : congestus clouds grew. During transition periods,
row, ?ﬁ)' Ws300 1S .tered using a some percentage between. Similar to Kumar et al. 25 0ct |
Gaussian Fourier filter. The small (2014).
filter reduces all components of w,,, 20 Oct -
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ol Left: Mean profiles in 6-h prior to “Cg” and
Mean Longitude-Height Structures | “Cb” periods, derived from AMIE
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ERA-I output.

5. Reduction in Subsidence
Promotes Moist Convection

Left: Difference in using
w3y, With large filter

between m

edian dates/

times of transition periods
and “Cg” periods. As zonal
wavenumber 1 feature

Center: Difference in Right: Fraction of total
adiabatic and radiative
heating caused by the
reduction in subsidence.
Radiative cooling reduced

as humidity increases, but

Cb period that can be
attributed to reduction of
subsidence. 25-50% of
moistening at 300-500

positive moistening during

propagates eastward, it not enough to hPa can be explained by
contributes to a reduction compensate for reduction  reduction of large-scale
in subsidence. in adiabatic warming. subsidence.
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6. Conclusions

- Anomalies of zonal wind, most easily detectable by its large signal near
150-250 hPa, and vertical velocity exist near the equator as a dry
wavenumber 1 structure.
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- As the upward branch of the zonal wind/vertical velocity structure
approaches the Indian Ocean, large-scale subsidence is reduced. As a
result, large-scale mean adiabatic heating and radiative cooling are
reduced at most levels.

- Reduction in adiabatic heating exceeds reduction in radiative cooling.
Moist convection is promoted in the lower troposphere during a 3—7 day
long transition period.

- Humidification of the low-troposphere allows deep convection to develop.

- Lessened subsidence enhances upper-tropospheric moistening, allowing
deep convection to develop rapidly into mesoscale convective systems.
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