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[34] We may also use the rawinsonde data set to gain more
insight into the relationship between tropospheric humidity
and echo top PDFs of the S-PolKa observations. FigureF9 9 con-
tains median relative humidity (RH) profiles for the rawin-
sonde data that correspond to the time periods composited
in Figure 6c. All profiles are remarkably consistent below
925 hPa; this is indicative of the persistently warm, moist
marine boundary layer. The remainder of this discussion will
refer to portions of the RH profiles above 925 hPa. Not sur-
prisingly, the RH profile during rainy periods closely parallels
the RH profile composited over phases 8–3 and is about 2 to
5% (absolute change in RH) greater below 400 hPa. The RH
profile during dry periods is close to, and even 1–3% less than
that during phases 4–7 up to 800 hPa. Above 800 hPa, the RH
profile during dry periods is between the profiles for phases
4–7 and phases 8–3, and it parallels the profile for phases
8–3 while remaining 5–10% lower. Thus, RH during dry
periods at levels between 850 hPa and 400 hPa is typically
10–15% lower than during rainy periods. Because of the small
sample sizes involved and the temporal autocorrelation of the
RH time series, none of the profiles are statistically different
at any level using a Mann-Whitney U test. Nonetheless, in
Figure 6c, we saw that convective echo top heights were signif-
icantly lower during dry periods than during rainy periods.
Here we see that the humidity profile for dry periods is also
lower, though it is moister than the profile duringMJO inactive
phases through much of the troposphere. That RH in the lower
troposphere during dry periods is close to that during phases
4–7 may have a physically meaningful explanation. Prior
studies [e.g.,Muller et al., 2009;Wang and Sobel, 2012] sug-
gest that low-level moisture may have some control on pre-
cipitation. Decreased moisture in the lower troposphere
during inactive MJO conditions, or during dry periods within

active MJO conditions, could restrict the amount and depth
of convection that forms. At the same time, the humidity
profiles during these periods may simply be lower because
fewer clouds are present. Thus, we are motivated to further
investigate the temporal relationship between convection
and environmental humidity.

7. Lag-Correlation Analysis of Precipitation Echo
and Tropospheric Humidity

7.1. The 20–60 Day Filtered Time Series
[35] A slew of studies referenced herein [ Q4Hendon and Salby,

1993; Q5Maloney and Hartmann, 1997; Q6Kemball-Cook and
Weare, 2000; Kiladis et al., 2005; Q7Benedict and Randall,
2006] and many others have used a band-pass filtered time
series of atmospheric variables, such as OLR or humidity, to
determine the relationship relevant on the time scale of the
MJO between those and other variables. Such methodology
is appropriate if the variables of interest are known to evolve
on the time scale for which they are filtered. These studies gen-
erally show a gradual buildup of moisture prior to onset of
convection. Regardless of the time scale of moisture buildup,
the low-level humidity increases prior to an increase in con-
vection in a time series filtered for MJO-variability; thus, prior
observational, reanalysis, and modeling studies have con-
cluded that the low-level moisture increase is critical for
MJO onset. While moisture buildup may be necessary in the
case of onset of a LCE downstream from the region of initial
MJO convective onset, our results show that the time scale
of moistening and convective buildup prior to MJO onset
is less than the traditional 10–100 day frequency used in
band-pass filtering. Thus, we have no reason to expect that a
band-pass filtered time series will accurately describe the

Table 2. Maximum Lagged Cross-Correlation Coefficients and the Lag (in Days) at Which They Occur (in Parentheses) for Filtered
Specific Humidity Anomaly Time Series at 850 hPa, 700 hPa, 500 hPa, and 300 hPa, as well as for the Filtered Time Series of Stratiform
and Convective Areal Coveragea

Convective Stratiform q300′ q500′ q700′

q850′ 0.86 (!1.625) 0.82 (!3.5) 0.79 (!5.125) 0.88 (!3.75) 0.76 (!1.5)
q700′ 0.90 (+0.125) 0.96 (!1.75) 0.74 (!3.125) 0.93 (!2.25)
q500′ 0.79 (+2) 0.90 (!0.5) 0.76 (!1.5)
q300′ 0.85 (+4) 0.94 (!2.125)
Stratiform 0.92 (+2.125)

aPositive lags indicate that the quantity listed in that column occurs first. Because of the small sample size, none of the correlations are statistically significant.

Table 3. Maximum Lagged Cross-Correlation Coefficients (With Lag in Hours in Parentheses) Between Convective/Stratiform Areal
Coverage and Unfiltered, Unsmoothed Specific Humidity Anomalies for 1 October to 15 January Using Various Smoothing Periodsa

Smoothing Interval

Var. 1 Var. 2 None 6 h 12 h 24 h 36 h 72 h
Conv q′850 0.45 (0) 0.49 (0) 0.54 (0) 0.60 (0) 0.61 (0) 0.69 (0)
Conv q′700 0.50 (+3) 0.53 (0) 0.58 (0) 0.66 (0) 0.70 (0) 0.80 (0)
Conv q′500 0.49 (+6) 0.51 (+6) 0.54 (+12) 0.61 (+24) 0.61 (+36) 0.73 (+72)
Conv q′300 0.44 (+9) 0.47 (+6) 0.51 (+12) 0.50 (0) 0.51 (+36) 0.59 (+72)
Strat q′850 0.34 (!3) 0.37 (!6) 0.39 (!12) 0.42 (!24) 0.46 (!36) 0.54 (!72)
Strat q′700 0.45 (!3) 0.47 (0) 0.50 (0) 0.55 (0) 0.61 (0) 0.77 (0)
Strat q′500 0.55 (+3) 0.57 (0) 0.60 (0) 0.65 (0) 0.70 (0) 0.76 (0)
Strat q′300 0.52 (+3) 0.56 (0) 0.61 (0) 0.66 (0) 0.68 (0) 0.74 (0)
Conv Strat 0.81 (+3) 0.80 (+6) 0.76 (0) 0.80 (0) 0.82 (0) 0.81 (0)

aAll correlation values that are in bold are statistically significant at the 95% level. Variables correlated are shown in columns 1 and 2. Positive lags indicate
that Variable 1 comes first. (Conv=Convective areal coverage; Strat = Stratiform areal coverage).
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