
MR2020: Coding for METOC

Module 9: Errors and Exceptions

*Many of the examples and explanations shown herein were generated by
ChatGPT V4.0.

What are errors and why do they occur?

Exceptions occur when Python cannot execute the code. They can occur for
several different reasons. When learning Python, syntax errors are commonly
raised. There are numerous types of errors that can be triggered (ask ChatGPT
for a full list and you will get a long list of errors that you will mostly never
encounter). Some of the commonly triggered built-in exceptions that you may
encounter include

§ SyntaxError
§ IndentationError
§ NameError
§ IndexError
§ TypeError
§ ImportError

§ ModuleNotFoundError
§ ZeroDivisionError
§ AttributeError
§ ValueError
§ MemoryError

This module provides
background on what each
of these exceptions means,
including an example of the
error.

3

SyntaxError

Syntax errors
impot numpy as np

for i in range(0,4)
A = 2

impot numpy as np
^

SyntaxError: invalid syntax

for i in range(0,4)
^

SyntaxError: expected ':'

Syntax errors occur when an incorrect statement is encountered during code
execution. It is commonly caused by misspelling Python key words, leaving out
colons, or incorrect usage of parenthesis, brackets, or braces.

IndentationError

Python uses indentation to define blocks of code. Improper indentation will lead
to an error. For example, text inside control flows or functions must be indented.

A = 2
if A > 2:
print('A is big!') print('A is big!’)

^
IndentationError: expected an
indented block after 'if'
statement on line 2

A = 2
if A > 2:

print('A is big!’)
B = 3

B = 3
^
IndentationError: unindent does
not match any outer indentation
level

Inconsistent indentation will
also trigger an error.

One line is tabbed and the other
is indented with 3 spaces,
creating inconsistent indentation. 4

5

NameError

A NameError occurs when the code attempts to use a variable or function name
that has not been defined. This can happen when a variable name is misspelled
and often happens when a variable is simply not defined at the point where the
code encounters it.

1 import numpy as np
2 avg = np.mean([4,3,2])

----> 3 print(average)
NameError: name 'average' is not defined

mylist = [4,3,2]
def calcavg(list):

avg = np.mean(list)
return avg

calcavg(mylist)
print(avg)

import numpy as np
avg = np.mean([4,3,2])
print(average)

4 return avg
5 calcavg(mylist)

----> 6 print(avg)
NameError: name 'avg' is not defined

Error occurs because the variable ’average’
has not been assigned. Only ‘avg’ would
work.

Error occurs because scope of variable
‘avg’ is limited to inside function and we
are trying to print it outside the function.

vscode-notebook-cell:?execution_count=1&line=1
vscode-notebook-cell:?execution_count=1&line=2
vscode-notebook-cell:?execution_count=1&line=3
vscode-notebook-cell:?execution_count=3&line=4
vscode-notebook-cell:?execution_count=3&line=5
vscode-notebook-cell:?execution_count=3&line=6

6

IndexError

An IndexError occurs when the code attempts to access a position in a sequence
(such as a list) that does not exist.

fruits = ["apple", "banana"]
print(fruits[2])

 1 fruits = ["apple", "banana"]
----> 2 print(fruits[2])
IndexError: list index out of range

Element 0 Element 1

In this example, there are only 2
elements in the list. Therefore,
fruits[2], which attempts to access
the 3rd element, throws an error.

vscode-notebook-cell:?execution_count=5&line=1
vscode-notebook-cell:?execution_count=5&line=2

7

TypeError

A TypeError occurs when you try to execute an illegal operation on a particular
data type. For example, you can’t add a string to an integer number. A TypeError
can also occur when the incorrect data type is passed to a function that requires
a specific data type.

def divide(a, b):
return a / b

Trying to pass a string instead of a
number
result = divide(10, "2")
print(result)

 2 return a / b
 4 # Trying to pass a string instead of a number
----> 5 result = divide(10, "2")
 6 print(result)

line 2
 1 def divide(a, b):
----> 2 return a / b
TypeError: unsupported operand type(s) for /: 'int' and
'str'

Suppose we have this code, which
includes a function that requires
two numbers to divide.

The error occurs at the
line where we try to
pass an int and str to
the function and inside
the function where the
division is attempted.

vscode-notebook-cell:?execution_count=10&line=2
vscode-notebook-cell:?execution_count=10&line=4
vscode-notebook-cell:?execution_count=10&line=5
vscode-notebook-cell:?execution_count=10&line=6
vscode-notebook-cell:?execution_count=10&line=2
vscode-notebook-cell:?execution_count=10&line=1
vscode-notebook-cell:?execution_count=10&line=2

8

TypeError

class Dog:
def __init__(self, name):

self.name = name

def bark(self):
return "Woof!"

Create an instance of Dog
my_dog = Dog("Rex")

Attempt to call name
attribute as a method
my_dog.name()

A TypeError may also occur when
erroneously trying to call a class
attribute as a method. In the line

my_dog.name()

the name attribute should be
accessed without parentheses.
Instead, it is being called as a
method and the following error
appears because you cannot call a
string (which “Rex” is):

TypeError: 'str' object is
not callable

9

ImportError

An ImportError occurs when it attempts to load a module that is not accessible.
Mostly commonly, this happens if the module name is misspelled or if it is not
installed, and throws a ModuleNotFoundError.

Import errors can also occur when there are circular dependencies or syntax
errors within a module that is being imported. These are less commonly
encountered.

----> 1 import pygrib as pg
ModuleNotFoundError: No module named 'pygrib'

----> 1 import numppy as np
ModuleNotFoundError: No module named 'numppy'

Example of simple typo in module import

Example of attempting to import an actual module that is not installed.

vscode-notebook-cell:?execution_count=13&line=1
vscode-notebook-cell:?execution_count=12&line=1

10

ZeroDivisionError

When Python attempts to divide by zero, it returns a ZeroDivisionError.

A = [4,3,1]
B = [0,3,2]

for i,j in zip(A,B):
print(i/j)

 2 B = [0,3,2]

 4 for i,j in zip(A,B):
----> 5 print(i/j)
ZeroDivisionError: division by zero

A = np.array([4,3,1])
B = np.array([0,3,2])
print(A/B)

NOTE: Below code does not return
error. By default, NumPy returns inf or
–inf when dividing by zero. However, it
will print out a warning that does not
stop the code.

RuntimeWarning: divide by zero
encountered in divide A/B

array([inf, 1. , 0.5])

Returns

vscode-notebook-cell:?execution_count=25&line=2
vscode-notebook-cell:?execution_count=25&line=4
vscode-notebook-cell:?execution_count=25&line=5

11

AttributeError

An AttributeError occurs when you try to access or call an attribute (such as a
method or property) that does not exist on an object. This typically happens
when there is a typo, a misunderstanding of an object’s available attributes, or a
misuse of a method or property.

class Pair:
def __init__(self,num1,num2):

self.number1 = num1
self.number2 = num2

def sum(self):
return self.number1 + self.number2

def product(self):
return self.number1 * self.number2

nums = Pair(3,4)
nums.product() # OK
nums.num1 # Error
nums.compare() # Error

AttributeError: 'Pair' object has no
attribute 'num1'

AttributeError: 'Pair' object has no
attribute 'compare'

12

ValueError

A ValueError occurs in Python when a built-in operation or function receives an
argument that has the right type but an inappropriate value. This often happens
when the input does not conform to the expected domain or range of the
function.

Common Causes of ValueError
1. Invalid Literal for Conversion

Attempting to convert a string to
an integer or float when the string
contains non-numeric characters.

2. Out-of-Range Values
Passing a number that is outside
the valid range for a given
function or method.

3. Incorrect Data Format
Providing data in an incorrect
format that a function cannot
process.

4. Mismatch in Data Length
Supplying data sequences of
mismatched lengths when a
specific length is required.

Attempt to cast string as int
number = int("abc123")

ValueError: invalid literal for
int() with base 10: 'abc123'

Attempting to access a list
element with an invalid index
values = [10, 20, 30]
value = values.index(40)

ValueError: 40 is not in list

13

MemoryError

A MemoryError occurs in Python when the program runs out of memory,
typically because the memory required for an operation exceeds what is available
on the machine. This often happens when dealing with very large data
structures, inefficient data handling, or infinite loops that consume memory.

Common Causes of MemoryError
1. Excessive Memory Allocation

Creating excessively large data structures such as lists, dictionaries,
or NumPy arrays that the system cannot handle.

2. Infinite Loops with Accumulating Data
Loops that continuously append data to a collection without a
termination condition.

3. Processing Large Files or Data Sets
Reading large files or datasets into memory all at once rather than
using efficient data processing techniques.

4. Inefficient Data Structures
Using data structures that are not optimized for memory usage,
leading to excessive consumption.

14

Handling Exceptions Explicitly
There may be times when the programmer wants to raise an error that is not
normally raised during code execution.

For example, suppose you have a list of dictionaries containing information about
several people, including age. Perhaps you want to calculate the average age of
the people, but you want to ensure that an error is raised if anyone’s age is less
than 0.

people = [
{'name': 'Bill', 'age': 35},
{'name': 'Sue', 'age': 52},
{'name': 'Mike', 'age': 23},
{'name': 'Zoe', 'age': -6},
{'name': 'Peter', 'age': 14}
]

total = 0
for person in people:

age = person['age']
Explicitly raise error where it wouldn't otherwise occur
if age < 0:

raise ValueError('No negative ages allowed.')
else: total += age

In this example, Python would happily calculate
the average of the 5 numbers, but since negative
ages don’t make sense, we need to explicitly call
an error. A ValueError makes sense to raise here,
but we could define a custom error class.

The raise
keyword calls
an error
explicitly in
Python.

