
MR2020: Coding for METOC

Module 8: Classes

2

What is a Class?

Classes are the building blocks of object-oriented programming. Objects have
attributes (things that describe them) and methods (things that can be done
with them).

class Pair:
def __init__(self,num1,num2):

self.number1 = num1
self.number2 = num2

def sum(self):
return self.number1 + self.number2

def product(self):
return self.number1 * self.number2

def isequal(self):
if self.number1 == self.number2:

print('Numbers are equal.’)
else:

print('Numbers are not equal.')

3

Anatomy of a Class

class Pair:
def __init__(self,num1,num2):

self.number1 = num1
self.number2 = num2

def sum(self):
return self.number1 + self.number2

def product(self):
return self.number1 * self.number2

def isequal(self):
if self.number1 == self.number2:

print('Numbers are equal.’)
else:

print('Numbers are not equal.')

The name of the
class is Pair.

4

Anatomy of a Class

class Pair:
def __init__(self,num1,num2):

self.number1 = num1
self.number2 = num2

def sum(self):
return self.number1 + self.number2

def product(self):
return self.number1 * self.number2

def isequal(self):
if self.number1 == self.number2:

print('Numbers are equal.’)
else:

print('Numbers are not equal.')

num1 and num2 are
the inputs into the
class

The __init__ function is used to establish an instance
and set its attributes. It is called automatically when an
instance is created.

5

Creating an Instance

leroyjenkins = Pair(3,4)

leroyjenkins is the name of
the new object.

leroyjenkins is made an instance of
the class Pair with inputs 3 and 4.

The 3 and 4 are assigned to
attributes as described in the
__init__ function for the Pair class.

leroyjenkins is an instance of the class Pair.

6

Anatomy of a Class

class Pair:
def __init__(self,num1,num2):

self.number1 = num1
self.number2 = num2

def sum(self):
return self.number1 + self.number2

def product(self):
return self.number1 * self.number2

def isequal(self):
if self.number1 == self.number2:

print('Numbers are equal.’)
else:

print('Numbers are not equal.')

Methods describe things a class can do or that can be done to it.

This class has three methods,
sum, product, and isequal. They
are all written as functions inside
the class.

7

Anatomy of a Class

class Pair:
def __init__(self,num1,num2):

self.number1 = num1
self.number2 = num2

def sum(self):
return self.number1 + self.number2

def product(self):
return self.number1 * self.number2

def isequal(self):
if self.number1 == self.number2:

print('Numbers are equal.’)
else:

print('Numbers are not equal.')

The sum method simply returns
the sum of the two attributes.

8

Anatomy of a Class

class Pair:
def __init__(self,num1,num2):

self.number1 = num1
self.number2 = num2

def sum(self):
return self.number1 + self.number2

def product(self):
return self.number1 * self.number2

def isequal(self):
if self.number1 == self.number2:

print('Numbers are equal.’)
else:

print('Numbers are not equal.')

The product method returns the
product of the two attributes.

9

Anatomy of a Class

class Pair:
def __init__(self,num1,num2):

self.number1 = num1
self.number2 = num2

def sum(self):
return self.number1 + self.number2

def product(self):
return self.number1 * self.number2

def isequal(self):
if self.number1 == self.number2:

print('Numbers are equal.’)
else:

print('Numbers are not equal.')

The isequal method evaluates
whether the two attributes are
equal and uses an if-else control
flow to print whether they are
equal.

10

Calling Attributes and Methods

leroyjenkins = Pair(3,4)

Calling attributes
leroyjenkins.number1
leroyjenkins.number2

Calling methods
leroyjenkins.sum()
leroyjenkins.product()
leroyjenkins.isequal()

1) Attributes and methods are called by inserting a period after the object name.

2) Attributes are all the variables defined in the __init__ function of the class and can
be called by inserting their name after the period.

3) Methods are all the functions (aside from __init__) that are defined inside the
class. They can be accessed by inserting the function name after the period.

4) Parentheses must be inserted after a function name but not after an attribute.

11

class Dog:
species = 'Canis familiaris’
def __init__(self, name):

self.name = name

Class and Instance Variables

Class variables are shared across all instances of a class. Example: All dogs are
canis familiaris.

Instance variables are unique to each instance of a class and are established
when the object is created and the __init__ function is executed. Example: Not
every dog has the same name.

species is a class variable. All
instances of Dog will have
this attribute regardless of is
passed to the __init__
function as input.

name is an instance variable.
Different instances of dog
might have different names
depending on the input
provided when the object is
created.

12

Inheritance is a
mechanism for creating a
new class using details of
an existing class without
modifying it.

Inheritance
Base class
class Animal

def __init__(self, name):
self.name = name

def speak(self):
return "Some sound"

Derived class
class Dog(Animal):

def __init__(self, name, breed):
Call the __init__ method of the base class
super().__init__(name)
self.breed = breed

Override the speak method
def speak(self):

return "Woof!"

Additional method specific to Dog
def fetch(self):

return f"{self.name} is fetching the ball!"

Create an instance of Dog
my_dog = Dog(”Buddy", "Golden Retriever")

Access attributes and methods
print(f"Name: {my_dog.name}") # Output: Name: Buddy
print(f"Breed: {my_dog.breed}") # Output: Breed: Golden Retriever
print(my_dog.speak()) # Output: Woof!
print(my_dog.fetch()) # Output: Buddy is fetching the ball!

Dog inherits the
attributes and methods
of Animal here.

The speak method of
Animal is overwritten
by a speak method
specific to Dog.

Dog is given a new
method that the generic
Animal doesn’t have.

