
MR2020: Coding for METOC

Module 7: Introduction to Functions

What are functions?

Functions are reusable blocks of code that only run when called. They are useful for
actions that need to be repeated many times so that the programmer need not
copy/paste the same code repeatedly.

Input object(s)
Output

object(s)

function
Code gets

executed locally in
here*

*Objects created inside the function have a scope limited
to that function (unless they are made global).

3

A simple function

Let’s consider a simple mathematical function first:

𝑓 𝑥 = 	𝑥! − 𝑥" + 𝑥 − 1

Basic idea: Plug in something for x. Get something back for f(x).

4

A simple function

Let’s consider a simple mathematical function first:

𝑓 𝑥 = 	𝑥! − 𝑥" + 𝑥 − 1

Basic idea: Plug in something for x. Get something back for f(x).

import numpy as np

def f(x):
return x**3-x**2+x-1

x = np.arange(-30,30.1,0.1)
y = f(x)

Code that plots y against x.
...

5

A simple function

Let’s consider a simple mathematical function first:

𝑓 𝑥 = 	𝑥! − 𝑥" + 𝑥 − 1

Basic idea: Plug in something for x. Get something back for f(x).

def f(x):
return x**3-x**2+x-1

Python keyword
for defining a
function

Name of function: Must be alphanumeric
and must begin with letter Input(s): Multiple inputs

can be separated by
commas and all inputs
must be surrounded by

parentheses.

Python return statement:
Tells Python to exit the
function and output the
following expression(s)

Output(s): Multiple
outputs can be

separated by commas.

Colon required at end of function declaration.

6

More complicated function example*

def process_row(row):
Find the x, y, z location
Initialize search radius
xc = matchcoordinatetoindex(scale_change*row.x,xh)
yc = matchcoordinatetoindex(scale_change*row.y,yh)
zc = matchcoordinatetoindex(scale_change*(row.z-row.zs),zh)

boxsize = 50 # Size of box to check around point for cloud.

if mask[zc,yc,xc] == 0 or mask[zc,yc,xc] == 1:
row['cloud_edge_distance'] = None

else:
Calculate distance to every point within 100 grid cells.
Make a meshgrid of x and y distances surrounding the center point.
xd, yd = np.meshgrid(range(-boxsize,boxsize+1),range(-boxsize,boxsize+1))
Get a boxsize by boxsize matrix of distances from the center point.
dd = 100*np.sqrt(xd**2+yd**2)
Calculate the distances and choose the smallest one that meets the criteria.
smallmask = mask[zc,yc-boxsize:yc+boxsize+1,xc-boxsize:xc+boxsize+1]
Set to True if smallmask is NOT cloud.
cond = (smallmask == 0) | (smallmask == 1)
try:
Find minimum distance to a NOT cloudy point.
row['cloud_edge_distance'] = dd[cond].min()
except: # Sometimes the parcel is on the edge of the domain, and we haven't yet
handled wrapping the distance calculation around the domain. So for now,
we'll just make these have a "bad distance", then figure it out later if
needed.
row['cloud_edge_distance'] = None

return row

*Just an example from research.

7

More complicated function example

def process_row(row):
Find the x, y, z location
Initialize search radius
xc = matchcoordinatetoindex(scale_change*row.x,xh)
yc = matchcoordinatetoindex(scale_change*row.y,yh)
zc = matchcoordinatetoindex(scale_change*(row.z-row.zs),zh)

boxsize = 50 # Size of box to check around point for cloud.

if mask[zc,yc,xc] == 0 or mask[zc,yc,xc] == 1:
row['cloud_edge_distance'] = None

else:
Calculate distance to every point within 100 grid cells.
Make a meshgrid of x and y distances surrounding the center point.
xd, yd = np.meshgrid(range(-boxsize,boxsize+1),range(-boxsize,boxsize+1))
Get a boxsize by boxsize matrix of distances from the center point.
dd = 100*np.sqrt(xd**2+yd**2)
Calculate the distances and choose the smallest one that meets the criteria.
smallmask = mask[zc,yc-boxsize:yc+boxsize+1,xc-boxsize:xc+boxsize+1]
Set to True if smallmask is NOT cloud.
cond = (smallmask == 0) | (smallmask == 1)
try:
Find minimum distance to a NOT cloudy point.
row['cloud_edge_distance'] = dd[cond].min()
except: # Sometimes the parcel is on the edge of the domain, and we haven't yet
handled wrapping the distance calculation around the domain. So for now,
we'll just make these have a "bad distance", then figure it out later if
needed.
row['cloud_edge_distance'] = None

return row

I
n
d
e
n
t
e
d

8

More complicated function example

def process_row(row):
Find the x, y, z location
Initialize search radius
xc = matchcoordinatetoindex(scale_change*row.x,xh)
yc = matchcoordinatetoindex(scale_change*row.y,yh)
zc = matchcoordinatetoindex(scale_change*(row.z-row.zs),zh)

boxsize = 50 # Size of box to check around point for cloud.

if mask[zc,yc,xc] == 0 or mask[zc,yc,xc] == 1:
row['cloud_edge_distance'] = None

else:
Calculate distance to every point within 100 grid cells.
Make a meshgrid of x and y distances surrounding the center point.
xd, yd = np.meshgrid(range(-boxsize,boxsize+1),range(-boxsize,boxsize+1))
Get a boxsize by boxsize matrix of distances from the center point.
dd = 100*np.sqrt(xd**2+yd**2)
Calculate the distances and choose the smallest one that meets the criteria.
smallmask = mask[zc,yc-boxsize:yc+boxsize+1,xc-boxsize:xc+boxsize+1]
Set to True if smallmask is NOT cloud.
cond = (smallmask == 0) | (smallmask == 1)
try:
Find minimum distance to a NOT cloudy point.
row['cloud_edge_distance'] = dd[cond].min()
except: # Sometimes the parcel is on the edge of the domain, and we haven't yet
handled wrapping the distance calculation around the domain. So for now,
we'll just make these have a "bad distance", then figure it out later if
needed.
row['cloud_edge_distance'] = None

return row

A bunch of stuff happens in this box.

9

More complicated function example

def process_row(row):
Find the x, y, z location
Initialize search radius
xc = matchcoordinatetoindex(scale_change*row.x,xh)
yc = matchcoordinatetoindex(scale_change*row.y,yh)
zc = matchcoordinatetoindex(scale_change*(row.z-row.zs),zh)

boxsize = 50 # Size of box to check around point for cloud.

if mask[zc,yc,xc] == 0 or mask[zc,yc,xc] == 1:
row['cloud_edge_distance'] = None

else:
Calculate distance to every point within 100 grid cells.
Make a meshgrid of x and y distances surrounding the center point.
xd, yd = np.meshgrid(range(-boxsize,boxsize+1),range(-boxsize,boxsize+1))
Get a boxsize by boxsize matrix of distances from the center point.
dd = 100*np.sqrt(xd**2+yd**2)
Calculate the distances and choose the smallest one that meets the criteria.
smallmask = mask[zc,yc-boxsize:yc+boxsize+1,xc-boxsize:xc+boxsize+1]
Set to True if smallmask is NOT cloud.
cond = (smallmask == 0) | (smallmask == 1)
try:
Find minimum distance to a NOT cloudy point.
row['cloud_edge_distance'] = dd[cond].min()
except: # Sometimes the parcel is on the edge of the domain, and we haven't yet
handled wrapping the distance calculation around the domain. So for now,
we'll just make these have a "bad distance", then figure it out later if
needed.
row['cloud_edge_distance'] = None

return row

A bunch of stuff happens in this box.

Variables defined in function
are local in scope, meaning
they are forgotten after the
function runs.

10

More complicated function example

def process_row(row):
Find the x, y, z location
Initialize search radius
xc = matchcoordinatetoindex(scale_change*row.x,xh)
yc = matchcoordinatetoindex(scale_change*row.y,yh)
zc = matchcoordinatetoindex(scale_change*(row.z-row.zs),zh)

boxsize = 50 # Size of box to check around point for cloud.

if mask[zc,yc,xc] == 0 or mask[zc,yc,xc] == 1:
row['cloud_edge_distance'] = None

else:
Calculate distance to every point within 100 grid cells.
Make a meshgrid of x and y distances surrounding the center point.
xd, yd = np.meshgrid(range(-boxsize,boxsize+1),range(-boxsize,boxsize+1))
Get a boxsize by boxsize matrix of distances from the center point.
dd = 100*np.sqrt(xd**2+yd**2)
Calculate the distances and choose the smallest one that meets the criteria.
smallmask = mask[zc,yc-boxsize:yc+boxsize+1,xc-boxsize:xc+boxsize+1]
Set to True if smallmask is NOT cloud.
cond = (smallmask == 0) | (smallmask == 1)
try:
Find minimum distance to a NOT cloudy point.
row['cloud_edge_distance'] = dd[cond].min()
except: # Sometimes the parcel is on the edge of the domain, and we haven't yet
handled wrapping the distance calculation around the domain. So for now,
we'll just make these have a "bad distance", then figure it out later if
needed.
row['cloud_edge_distance'] = None

return row

Eventually, there is a return statement. In this
case, the output is the same as the input,
meaning that this function is modifying the
input in some way and feeding it back to the
parent code.

11

Variable scope

An object defined outside a function has a global scope. It can be accessed both
inside and out of functions.

An object defined inside a function has a local scope. It can only be accessed inside
the function in which it is created.

def calc_greatest(list1, list2):
"""
Inputs: Two lists of equal lengths containing numbers.
Output: List containing largest elementwise values between the inputs.
""”
if len(list1) != len(list2):

raise(Exception('Lists are not the same length.'))

newlist = []
for i, j in zip(list1,list2):

newlist.append(max(i,j))

return newlist

A = [3, 5, 9]
B = [1, 8, 2]
greatest = calc_greatest(A,B)

This part is global. A, B, and
greatest are global objects.

12

def calc_greatest(list1, list2):
"""
Inputs: Two lists of equal lengths containing numbers.
Output: List containing largest elementwise values between the inputs.
""”
if len(list1) != len(list2):

raise(Exception('Lists are not the same length.'))

newlist = []
for i, j in zip(list1,list2):

newlist.append(max(i,j))

return newlist

A = [3, 5, 9]
B = [1, 8, 2]
greatest = calc_greatest(A,B)

This is the function. Everything that happens in here is local.

And this line calls the function.

13

def calc_greatest(list1, list2):
"""
Inputs: Two lists of equal lengths containing numbers.
Output: List containing largest elementwise values between the inputs.
""”
if len(list1) != len(list2):

raise(Exception('Lists are not the same length.'))

newlist = []
for i, j in zip(list1,list2):

newlist.append(max(i,j))

return newlist

A = [3, 5, 9]
B = [1, 8, 2]
greatest = calc_greatest(A,B)

The function expects two inputs. They are separated by
commas and surrounded by parenthesis on the line that
defines the function. The object names have local scope
inside the function.

We are assigning the global object A to local object list1
in the function. And B is assigned to local object list2. In
other words, the inputs are assigned in order of their
listing in the function declaration.

14

def calc_greatest(list1, list2):
"""
Inputs: Two lists of equal lengths containing numbers.
Output: List containing largest elementwise values between the inputs.
""”
if len(list1) != len(list2):

raise(Exception('Lists are not the same length.'))

newlist = []
for i, j in zip(list1,list2):

newlist.append(max(i,j))

return newlist

A = [3, 5, 9]
B = [1, 8, 2]
greatest = calc_greatest(A,B)
Objects list1, list2, newlist, i, j created in function no longer exist here.

If there were modifications to list1 and list2
in the function, they would do nothing to
change A and B outside the function.

The object newlist and iteration variables i
and j only exist inside the function. They
have local scope.

15

Lambda functions

Simple functions can be expressed as lambda functions. Lambda functions are
anonymous, meaning they are not a specific named function that can be called
anywhere in the code. They can contain any number of arguments but only one
expression.

They are best used for simple, repeated operations. For example, earlier we saw:

def f(x):
return x**3-x**2+x-1

x = np.arange(-30,30.1,0.1)
y = f(x)

As a lambda function, this could look like:

x = np.arange(-30,30.1,0.1)
y = [(lambda x : x**3-x**2+x-1)(x)for x in x]
y gets the output from all values of x without ever
explicitly defining a function.

16

Where do functions go?

Python interprets code from top to bottom, so functions must be defined before
they called (i.e., higher up in the script). Therefore, it is recommended for beginners
to define functions either

1) at the top of the code after all necessary module imports

or

2) in a separate file that can be imported.

A = [3, 5, 9]
B = [1, 8, 2]

Define the function first!
def addlists(A,B):

return A + B

Call the function.
addlists(A,B)

The function addlists is now in a
file in the same directory called
otherfile.py
from otherfile import addlists

A = [3, 5, 9]
B = [1, 8, 2]

Call the function.
addlists(A,B)

