
MR2020: Coding for METOC

Module 6: Control Flows and List Comprehensions

Control flows are a vital part of programming in any language. They handle the
logical progression of code. The main types of control flows we will use are

Conditional control flows:

if-elif-else Common type of conditional block; For example, ”if
 X, then do Y, but otherwise, do Z”.

match-case A more versatile version of if-elif-else; For example,
 if X looks like A then do B but if it looks like C then
 do D.

Exception handling:

try-except-else-finally Useful when running code that may throw an
 exception. For example, try some code but if it fails

 execute a different code.

Looping control flows:

for loops Execute code over all elements in an iterable object.
while loops May execute indefinitely until a condition is not met.2

3

if True
No

Yes

Execute if
block

if statement

Pass (do
nothing)

A = 3
if A == 4:

print('A is 4')

Example (nothing happens) Example (if statement is executed)

A = 3
if A < 4:

print(‘A is less than 4.')

4

if True

No, and there is
no else block

No, and
there is
an else
block

Yes
Execute

else block

Execute if
block

if-(else) block

Pass (do
nothing)

A = 3
if A == 4:

print('A is 4')

A = 3
if A == 4:

print('A is 4')
else:

print('A is not 4.')

Example without else
(nothing happens)

Example with else (last statement prints)

5

if True elif True

Yes

No

No, and there is
no else block

No, and
there is
an else
block

Yes
Execute

else block

Execute
elif block

Execute if
block

if-elif-(else) block*

Pass (do
nothing)

A = 3
if A == 4:

print('A is 4')
elif A == 5:

print('A is 5')

A = 3
if A == 4:

print('A is 4')
elif A == 5:

print('A is 5')
else:

print('A is neither 4 nor 5.')

Example without else
(nothing happens)

Example with else (last statement prints)

*In MATLAB, elif is elseif.

6

Match-case blocks
These function much like if-elif-else, but have more flexibility for handling data
structures, better readability, and scalability. Useful for particularly long if-elif blocks if
evaluating one variable. In MATLAB, this is known as switch-case.

match
variable

case 1 case 2 case 3 case 4 case _

Execute if
variable
matches
case 1

Execute if
variable
matches
case 2

Execute if
variable
matches
case 3

Execute if
variable
matches
case 4

Execute if
variable
matches
no listed

case

7

A simple example of match-case and
if-elif-else that do the same thing

def describe_number_if(n):
if n < 0:

return "Negative number"
elif n == 0:

return "Zero"
elif n > 0:

return "Positive number"

def describe_number_match(n):
match n:

case x if x < 0:
return "Negative number”

case 0:
return "Zero"

case x if x > 0:
return "Positive number"

These two do exactly
the same thing. In this
case, there is little
advantage to one over
the other though.

8

data = [2,3]

Match-case block
def processmatch(data):

match data:
case [x, y]: # Is data a 2-item list?

return f"List with two elements: {x}, {y}"
case (x, y, z): # Is data a 3-item tuple?

return f"Tuple with three elements: {x}, {y}, {z}"
case {'name': name, 'age': age}: # Is data a dictionary w/ name and age keys?

return f"Dictionary with name and age: {name}, {age}"
case _: # Is data none of the above?

return "Unknown data structure"

Equivalent if-elif-else block
def processif(data):

Is data a 2-item list?
if isinstance(data, list) and len(data) == 2:

x, y = data
return f"List with two elements: {x}, {y}”

Is data a 3-item tuple?
elif isinstance(data, tuple) and len(data) == 3:

x, y, z = data
return f"Tuple with three elements: {x}, {y}, {z}”

Is data a dictionary w/ name and age keys?
elif isinstance(data, dict) and 'name' in data and 'age' in data:

name = data['name’]
age = data['age’]
return f"Dictionary with name and age: {name}, {age}"

else: # Is data none of the above?
return "Unknown data structure"

More complex example

9

Try-except-(else)-(finally) blocks

try (use for
code that
may fail)

Does it
fail?

Is there an
else block?

Is there a
finally?

Execute
finally

Exit block

No

No

Execute
else

No
Yes

Yes

Yes

except 1

except 2

General
except

Execute
appropriate
exception

block

10

A, B = 1, 0
try: # Divide A by B.

C = A/B
except ZeroDivisionError: # If a divide by zero error occurs, do this.

print('No dividing by zero!')
except TypeError: # If a TypeError occurs, do this.

print('A type error has occurred.')
except: # If some other error occurs, do this instead.

print('Something unknown went wrong!')
else: # Do this if the try code worked.

print('You successfully divided!')
finally: # Do this regardless of what happened above.

del A, B

Try-except-(else)-(finally) example

Try running this code. See what happens if you change B to not be zero. What
happens to A and B after the code is run?

11

Pass, continue, and break

pass is a null placeholder. It indicates that no action is to be taken. While technically
not necessary, it can be used in a location (such as a function, class, or within any
control flow) where future code is planned.

if A > 3:
print('A is huge.’)

else: # Figure out what to do later.
pass # This isn’t required. We could simply leave out the else block.

A couple of Python statements are particularly important in looping control flows.

continue statements will immediately stop the current iteration of a loop and
return the loop back to the beginning. If in a for loop, it will iterate over the next
element in the iterable.

break statements will cause the loop to immediately end, i.e., exit the loop and start
executing whatever code (if any) follows the loop.

12

For loops

Start

All
elements
executed?

Exit block

Execute
code in

loop

No

Yes

Does code
execute
break?

No

Yes

numbers = (1,2,3,4,5)

continue

This (numbers) is just an example of an iterable. It could be a
list, a dictionary, a numpy array, or a range, for example.
Essentially any object in Python that can be accessed one
element at a time can be used as an iterable.

numbers = (1,2,3,4,5)
for i in numbers:

if i == 4: continue
if i == 5:

print('Stopping loop...’)
break

print(i)

What’s going on below?

13

While loops

Start

Evaluate
condition

Exit block

Execute
code in

loop

True

False

Does code
execute
break?

No

Yes

continue

count = 0
while count <= 4:

print(count)
count += 1

A very simple while loop

14

For loops are slow! Use them only as necessary!

15

List comprehension (can also be applied to sets and
dictionaries)

In Python, comprehensions are powerful constructs for creating lists. They are
particularly useful for applying an expression (sometimes a function) to an
iterable. They may perform faster and enhance readability.

For loop to create a list with the first 20 squares.
squares = []
for i in range(1,21):

squares.append(i**2)

Do the same thing with a list comprehension.
squares = [x**2 for x in range(1,21)] # About 3x faster.

16

squares = [x**2 for x in range(1,21)]

Anatomy of a list comprehension

New variable
name

Outside brackets
tell us the output is

a list

Expression
evaluated

and inserted
into the list Iteration

variable

Iterable

for means we
will loop

through the
iterable

English: For each value of x from 1 to 20, insert x-squared into the list.

NOTE: The iteration
variable only exists inside
the list comprehension.
After this line of code is

executed, x no longer exists
in memory. In other words,
the scope of x is limited to

this line of code.

17

numbers = range(10)

To include print statements, you would need to use a helper function
def process_number(num):

if num % 2 == 0:
print(f"{num} is even, squared value is {num ** 2}")
return num ** 2

else:
print(f"{num} is odd, cubed value is {num ** 3}")
return num ** 3

result = [process_number(num) for num in numbers]
print(result)

numbers = range(10)
result = []

for num in numbers:
if num % 2 == 0:

result.append(num ** 2)
print(f"{num} is even, squared value is {num ** 2}")

else:
result.append(num ** 3)
print(f"{num} is odd, cubed value is {num ** 3}")

print(result)

Readability and complexity matter too!

Equivalent for loop

Example of list comprehension requiring a
function to call another process (print)

Which one is more
readable? Plus, if you
execute both, which,
if either, is faster?

18

If statements can also be incorporated

oddsquares = [x**2 for x in range(1,21) if x % 2 != 0]

In this example, list oddsquares will only get the squares of odd integers up
to 20.

oddsquaresdict = {x: x**2 for x in range(1,21) if x % 2 != 0}

Similar idea, but now we are making a dictionary in which values of x are the keys
and x**2 are the values.

