
MR2020: Coding for METOC

Module 5: Indexing and Slicing in Python

Many objects can contain multiple elements (e.g., lists, tuples,
dictionaries, NumPy arrays). In these cases, each data element
has its own address in memory. We use indexing to access
each individual element. Consider the list A below:

A = [1,2,4,8,16,32,64]

Python index 0 1 2 43 5 6

Suppose I want to pull out the 8 from the list A. I would use
the following code:

MATLAB index 1 2 3 54 6 7

A[3]

variable index

Square
brackets
surround
indices

3

A = np.random.randint(10,size=(4,4))

array([[0, 8, 4, 9],
 [0, 3, 4, 5],
 [7, 8, 7, 6],
 [8, 5, 6, 9]])

2D Array Indexing

A[2,1] is 8.

1

2

row column

In METOC datasets, the indexing often corresponds to the y-axis
(rows) and the x-axis (columns).

4

array([[[2, 9],
 [6, 2],
 [6, 0]],

 [[3, 5],
 [0, 9],
 [8, 8]],

 [[9, 0],
 [6, 5],
 [7, 2]]])

3D Array Indexing

A = np.random.randint(10,size=(3,3,2))

A[1,2,0] is 8.

row

columndepth

In METOC datasets, the indexing often corresponds to the z-axis (depth), y-axis
(rows) and the x-axis (columns). This often corresponds to height (or depth), north-
south direction, and east-west direction. One way of thinking about this is that 1D
arrays in Python have several columns in a single row. As we add additional
dimensions, they appear sequentially to the left in the order of indices. So, we could
add a fourth dimension (like time), and its index would appear first in a 4D array.

Boolean Indexing

Rather than explicitly listing indices to access elements in a list, array, or other
multi-elemental data structure, we can select data based on whether it meets
some condition. This is called Boolean indexing. Suppose we have two arrays:

array([[0, 8, 4, 9],
 [0, 3, 4, 5],
 [7, 8, 7, 6],
 [8, 5, 6, 9]])

array([[0, 1, 1, 0],
 [0, 0, 0, 1],
 [1, 0, 1, 0],
 [0, 1, 1, 1]])

A B

A[B==1]
If I run the following code:

then I will get the following 1D array, which
contains only the elements of A where the
statement B == 1 is True.

array([8, 4, 5, 7, 7, 5, 6, 9])

For more complicated Boolean statements, we
could also define the condition as a Boolean
variable first:

cond = (B==1)
A[cond]

5

A = [1,2,4,8,16,32,64]

Regular index 0 1 2 43 5 6

Negative index -7 -6 -5 -3-4 -2 -1

Negative Indices

Sometimes, we need to grab the last few elements of a list, array, or string. In
these cases, negative indices are useful.

Or suppose I had a string that was a filename including its extension:

fname[-4:]

fname = 'testfile_20240712_132713.csv’

If I just wanted to grab the file extension (’.csv’), I could just run the following:

But what does -4: mean?

6

7

Slicing

We can also extract sequential subsets of data from a list, array, etc. using slicing.

A = [1,2,4,8,16,32,64]

Access all data up to the 4th element:

A[4:]
Returns [16,32,64]

Access data from 4th element onward:

A[:4]
Returns [1,2,4,8]

Why does this not include
16? Its index is 4!

1 2 4 8 16 32 64

Index
0 1 2 43 5 6

A[4]

8

Slicing

We can also extract sequential subsets of data from a list, array, etc. using slicing.

A = [1,2,4,8,16,32,64]

Access all data up to the 4th element:

A[4:]
Returns [16,32,64]

Access data from 4th element onward:

A[:4]
Returns [1,2,4,8]

Why does this not include
16? Its index is 4!

1 2 4 8 16 32 64

Index
0 1 2 43 5 6

A[:4]

9

Slicing

We can also extract sequential subsets of data from a list, array, etc. using slicing.

A = [1,2,4,8,16,32,64]

Access all data up to the 4th element:

A[4:]
Returns [16,32,64]

Access data from 4th element onward:

A[:4]
Returns [1,2,4,8]

Why does this not include
16? Its index is 4!

1 2 4 8 16 32 64

Index
0 1 2 43 5 6

A[4:]

10

Slicing

We can also extract sequential subsets of data from a list, array, etc. using slicing.

A = [1,2,4,8,16,32,64]

Access elements 2 through 4:

A[2:5] # start:stop
Returns [4,8,16]

1 2 4 8 16 32 64

Index
0 1 2 43 5 6

11

Slicing

We can also extract sequential subsets of data from a list, array, etc. using slicing.

A = [1,2,4,8,16,32,64]

Access every other element from 1 through 5:

A[1:6:2] # start:stop:step
Returns [2,8,32]

1 2 4 8 16 32 64

Index
0 1 2 43 5 6

12

Slicing

We can also extract sequential subsets of data from a list, array, etc. using slicing.

A = [1,2,4,8,16,32,64]

Access every third element from the start:

A[::3] # Two colons mean start
and stop at ends of array.
Returns [64]

1 2 4 8 16 32 64

Index
0 1 2 43 5 6

13

Combining Indexing and Slicing

A = np.random.randint(8,size=(3,3))

array([[2, 0, 4],
 [7, 1, 6],
 [5, 3, 4]])

What would A[1,:2] return?

14

Combining Indexing and Slicing

A = np.random.randint(8,size=(3,3))

array([[2, 0, 4],
 [7, 1, 6],
 [5, 3, 4]])

What would A[1,:2] return?

array([7, 1])

This is the second row (index 1), and all
elements up to the third element (slice :2).

15

Indexing Dictionaries

Dictionaries also contain multiple key-value pairs that we may want to access, but
their indices are not the same as that for a sequential data type or NumPy array.

storms = {
'name':['Alberto','Beryl','Chris','Debby','Ernesto','Francine'],
'category':['TS','5','TS','1','2','TS'],
'minpres':np.array([1000,938,1002,989,973,999]),
'maxwind':np.array([45,145,35,65,85,45]),
'landfall':[False,True,True,False,False,False]
}

What if I want to access the minimum pressure from the above dictionary?

storms['minpres']

I can also access a specific element within the data structure contained in the
returned value. The first square brackets grab the value at the specified key (like
the code above) and the second square brackets access the position within the
object stored in that key:

storms['minpres’][3] # Returns 989

Code the name of the key (as a
string) inside square brackets.

