
MR2020: Coding for METOC

Module 4: Introduction to NumPy

What is NumPy?

2

“NumPy is the fundamental package for scientific computing in Python. It is a
Python library that provides a multidimensional array object, various derived
objects (such as masked arrays and matrices), and an assortment of routines for
fast operations on arrays, including mathematical, logical, shape manipulation,
sorting, selecting, I/O, discrete Fourier transforms, basic linear algebra, basic
statistical operations, random simulation and much more.”

(From the NumPy User Guide at
https://numpy.org/doc/stable/user/whatisnumpy.html)

NumPy covers much of the functionality that MATLAB is used for in scientific
computing, including in METOC research.

MATLAB vs NumPy: https://numpy.org/doc/stable/user/numpy-for-matlab-
users.html

These slides are intended to introduce some basic capabilities of NumPy.
Links are scattered throughout the slides that provide information on a
plethora of additional capabilities.

https://numpy.org/doc/stable/user/whatisnumpy.html
https://numpy.org/doc/stable/user/numpy-for-matlab-users.html
https://numpy.org/doc/stable/user/numpy-for-matlab-users.html

3

NumPy Arrays

Arrays are the fundamental data structure in NumPy.

Importing numpy
import numpy as np

Create a 1D array.
arr1d = np.array([1,2,3])

Create a 2D array.
arr2d = np.array([[1,2,3],[2,3,4]])

Create a 3D array.
arr3D = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])

Seldom will you create an array like this. More commonly, you might create
placeholder arrays full of zeroes or ones or simply load existing data into an array.

4

Creating Placeholder Arrays

Creating a 2D array full of zeros with dimensions 10 by
5.
arrzeros = np.zeros([10,5])

Creating a 3D array full of ones with dimensions 3 by 3
by 10.
arrones = np.ones([3,3,10])

Create an array with a range of values given a start
value, stop value, and step.
Differs from Python range because decimal numbers may be
used!
In this case, create a range from 0 to 2 every 0.1.
arrarange = np.arange(0,2.1,0.1)

Create arrays with a specified number of elements,
and spaced equally between the specified beginning
and end values
arrlinspace = np.linspace(0,2,5)

5

Operations with arrays

A = np.array([1,2,3])
B = np.array([2,3,4])

Add
A + B # Returns array([3,5,7])

Subtract
A - B # Returns array([-1,-1,-1])

Multiply element-wise (VERY different from MATLAB!)
A * B # Returns array([2,6,12])

Divide element-wise (also VERY different than MATLAB!)
A / B # Returns array([0.5,0.6666667,0.75])

Exponent
A ** B # Returns array([1,8,81])

What happens when you add two
Python lists instead of NumPy arrays?

Arrays must have the same dimensions
to perform operations on them together.

6

Order of Operations

A = np.array([1,2,3])
B = np.array([2,3,4])

Example 1
(A + B)**(A*B)
array([9, 15625, 13841287201])

Example 2
A + B**(A*B)
array([5, 731, 16777219])

Example 3
(A+B)**A*B
array([6, 75, 1372])

1. Parentheses
2. Exponents
3. Products and Quotients
4. Additions and Subtractions

7

Commonly Used Functions

Sum an array
np.sum(A)

Mean of an array
np.mean(A)

Median of an array
np.median(A)

Maximum value in array
np.max(A)

Minimum value in array
np.min(A)

Cosine
np.cos(A)

Sine
np.sin(A)

Tangent
np.tan(A)

Convert degrees to radians
np.deg2rad(A)

Combine them
np.cos(np.deg2rad(A))

For more math functions (and ChatGPT will know these):
https://numpy.org/doc/stable/reference/routines.math.html

https://numpy.org/doc/stable/reference/routines.math.html

8

Handling Missing Data
METOC datasets often contain missing data. Maybe you’re looking at satellite data
and there was a temporary problem with scanning that causes data to not be
collected. Or maybe you are looking at a time series of sea surface temperature data
from a buoy and the instrument malfunctioned for a couple of days before it was
repaired. How do you handle missing data (which is very common in METOC
applications) without ruining your analysis?

Suppose you have an array like this:

A = np.array([2,3,np.nan,4])

What happens if you do np.mean(A)? You get nan (not a number).
NumPy has special functions to deal with this.

Max of NaN-containing array.
np.nanmax(A)
Min of NaN-containing array.
np.nanmin(A)
Mean of NaN-containing array.
np.nanmean(A)
Median of NaN-containing array.
np.nanmedian(A)

9

Linear Algebra
The fundamental data construct in MATLAB (Matrix Laboratory) is the matrix. In
contrast, NumPy uses the array as its basic construct. However, NumPy is still
capable of easily completing matrix operations. SciPy has some redundant and
additional capabilities.

A = np.array([1,2,3])
B = np.array([2,3,4])

Dot product
dotprod = np.dot(A,B)

Matrix multiplication
matprod = np.matmul(A,B)

More info here: https://numpy.org/doc/stable/reference/routines.linalg.html

https://numpy.org/doc/stable/reference/routines.linalg.html

10

Checking Dimensions, Shape, Size of Array

A = np.array([[1,2,3],[2,3,4]])

Size
Returns integer representing total number of elements in array
np.size(A)
A.size

Shape
Returns tuple containing number of rows, then number of columns
np.shape(A)
A.shape

Number of dimensions
Returns integer representing the number of dimensions in array
np.ndim(A)
A.ndim

These two lines do the same thing.

11

np.size(A)

A.size

A = np.array([[1,2,3],[2,3,4]])

For A as assigned above, these two lines do the same thing.

This line calls the function from NumPy and applies to it A.
This works but is not necessary because A is a NumPy array
object already. However, if A were a list of lists such as
A = [[1,2,3],[2,3,4]]
then only np.size(A) would work and A.size would not.

This line also returns the size of A, but because A is
already a NumPy object, it has several attributes
assigned to it. One of those is its size. So, the object A
has an attribute size (among others). Getting an
attribute requires putting a period after the variable
name then coding the attribute after it.

12

Hint: In the VSC interactive window, entering the variable
name and a period will a scrollable list of functions and
attributes that can be applied to that variable.

13

Reshaping Arrays
Sometimes you may need to change the shape of an array. There are many reasons this may
happen. Perhaps you have an array that needs to be transposed before plotting. Perhaps you need
to speed up an operation and you need to make your array one-dimensional. Below are some
common NumPy methods for reshaping arrays:

A = np.random.randint(10,size=(4,4))

Transpose array
A.transpose()

Reshape the 4 x 4 array to a 2 x 8 array.
A.reshape(2,8)

Flatten the array to 1D.
A.flatten()

array([[3, 3, 3, 6],
 [8, 5, 5, 4],
 [2, 3, 4, 1],
 [1, 5, 4, 4]])

These are rows.

These are columns.

14

array([[3, 3, 3, 6],
 [8, 5, 5, 4],
 [2, 3, 4, 1],
 [1, 5, 4, 4]])

This is A

array([[3, 8, 2, 1],
 [3, 5, 3, 5],
 [3, 5, 4, 4],
 [6, 4, 1, 4]])

A.transpose()

Transposing an array swaps its
rows and columns.

In this case, the shape
remains 4 x 4 because A was
square. But if A were for
example, 3 by 6, it would
become 6 by 3.

Transposing

15

array([[3, 3, 3, 6],
 [8, 5, 5, 4],
 [2, 3, 4, 1],
 [1, 5, 4, 4]])

This is A

A.reshape(2,8)

array([[3, 3, 3, 6, 8, 5, 5, 4],
 [2, 3, 4, 1, 1, 5, 4, 4]])

2 rows 8 columns

2 * 8 = 16

4 * 4 = 16

You can only reshape an
array so that it has the
same size as the original.

In this case, the reshape array has fewer rows than the original.
What would happen if we reshaped to 8 x 2 instead?

Reshaping

16

array([3, 3, 3, 6, 8, 5, 5, 4, 2, 3, 4, 1, 1, 5, 4, 4])

array([[3, 3, 3, 6],
 [8, 5, 5, 4],
 [2, 3, 4, 1],
 [1, 5, 4, 4]])

This is A

A.flatten()

Flattening an array
reduces it to 1 dimension
by stacking the rows
together one after another
into a single row.

Flattening

17

Stacking and Concatenating Arrays

NumPy arrays can also be combined with each other, in a process Python
calls stacking. Below are some examples for different ways to stack two 3D
arrays.

array1 = np.array([
[[1, 2], [3, 4]],
[[5, 6], [7, 8]]
])

array2 = np.array([
[[9, 10], [11, 12]],
[[13, 14], [15, 16]]
])

[1, 2 [5, 6
 3, 4] 7, 8]

[9, 10 [13, 14
 11, 12] 15, 16]

rows

columns

depth

rows

columns

Suppose we want to “stick” the two arrays together. How can we do this?

18

Stacking and Concatenating Arrays

array1 = np.array([
[[1, 2], [3, 4]],
[[5, 6], [7, 8]]
])

array2 = np.array([
[[9, 10], [11, 12]],
[[13, 14], [15, 16]]
])

[1, 2 [5, 6
 3, 4] 7, 8]

[9, 10 [13, 14
 11, 12] 15, 16]

rows

columns

depth

rows

columns

np.vstack((array1,array2))

Stack arrays along first dimension, which in this case will make the resulting
array deeper.

19

Stacking and Concatenating Arrays

array1 = np.array([
[[1, 2], [3, 4]],
[[5, 6], [7, 8]]
])

array2 = np.array([
[[9, 10], [11, 12]],
[[13, 14], [15, 16]]
])

[1, 2 [5, 6
 3, 4] 7, 8]

[9, 10 [13, 14
 11, 12] 15, 16]

rows

columns

depth

rows

columns

np.hstack((array1,array2))

Stack arrays along second dimension, which in this case will make the
resulting array have more rows.

20

Stacking and Concatenating Arrays

array1 = np.array([
[[1, 2], [3, 4]],
[[5, 6], [7, 8]]
])

array2 = np.array([
[[9, 10], [11, 12]],
[[13, 14], [15, 16]]
])

[1, 2 [5, 6
 3, 4] 7, 8]

[9, 10 [13, 14
 11, 12] 15, 16]

rows

columns

depth

rows

columns

np.dstack((array1,array2))

Stack arrays along third dimension, which in this case will make the
resulting array have more columns. For 2D arrays, a third dimension will be
added to the resulting stacked array.

21

Stacking and Concatenating Arrays

array1 = np.array([
[[1, 2], [3, 4]],
[[5, 6], [7, 8]]
])

array2 = np.array([
[[9, 10], [11, 12]],
[[13, 14], [15, 16]]
])

[1, 2 [5, 6
 3, 4] 7, 8]

[9, 10 [13, 14
 11, 12] 15, 16]

rows

columns

depth

rows

columns

np.stack((array1,array2),axis=0)

Make the different arrays a new dimension themselves, creating a new
array with, in this case, a fourth dimension, that would be indexed in the
position indicated by axis. Axis = 0 means the new dimension will be
indexed first.

