
MR2020: Coding for METOC

Module 3: Miscellaneous Items

Table of Contents

- Slides 2 – 8: Operators
- Slides 9 – 11: Module/Library/Package Imports and Creation
- Slides 12 – 14: Adding Packages to Python Environments

Operators

Python contains many different types of operators:

• Arithmetic (+ - * / ** % //)

• Comparison (> < <= >= == !=)

• Assignment (= += -= *= /= **= %= //=)

• Logical (and or not)

• Identity (is is not)

• Membership (in not in)

• Bitwise (& | ! ~ << >>)#

Bitwise operators not covered in detail in this class.

2

3

Arithmetic

+ Addition: A + B == 5.

- Subtraction: A – B == 1.

* Multiplication: A * B == 6.

/ Division: A / B == 1.5.

** Exponent: A ** B == 9.

% Modulus: A % B == 1

// Floor division: A // B == 1

Modulus calculates the remainder
when dividing.

Floor division rounds down to
nearest integer.

Assume

A = 3
B = 2

NOTE: None of the arithmetic
operators change A or B. They just
do a calculation with them.

4

Comparison

> Greater than: A > B == True.

< Less than: A < B == False.

<= Less than or equal to: A <= B == False.

>= Greater than or equal to: A >= B == True.

== Equal to: A == B == False.

!= Not equal to: A != B == True.

Assume

A = 3
B = 2

5

Assignment= Is assigned: A = 3.

+= Add and reassign: A += B makes A == 5.

-= Subtract and reassign: A -= B makes A == 1.

*= Multiply and reassign: A *= B makes A == 6.

/= Divide and reassign: A /= B makes A == 1.5.

**= Exponent and reassign: A **= B makes A == 9.

%= Take modulus and reassign: A %= B makes A == 1.

//= Floor divide and reassign: A //= B makes A == 1.

Assume

A = 3
B = 2

NOTE:
Assignment
variables
define or
change the
value of a
variable on
the left-
hand side of
the
operator.

6

Logical

and Returns True if both statements are True.

or Returns True if either statement is True.

not Reverses result and returns True if the
statement is False.

Assume

A = 3
B = 2

A > 2 and B < 1

This is True: A > 2 or B < 1

This is False:

This is False: not A > 2

A > 2 or B < 1 and not B < 0What happens if we do this?

7

Identity
Example variables
a = [1, 2, 3]
b = a
c = [1, 2, 3]

is operator
if a is b:

print("a and b point to the same object")

is not operator
if a is not c:

print("a and c do not point to the same object")

is and is not are used to determine if two variables point to the same
object. b points to the same object as a because it is assigned as a. Even
though c is set to an equivalent list as a, it occupies a different space in
memory, so c is not a.

Try running a.append(4) and see what happens to b.

8

Membership

Example list
fruits = ["apple", "banana", "cherry"]

in operator
if "banana" in fruits:

print("Banana is in the list of fruits")

not in operator
if "grape" not in fruits:

print("Grape is not in the list of fruits")

in and not in are useful for identifying if something is an element in a list,
set, or even NumPy array. The example above evaluates whether a string is or is
not in a list, but this could be extended to determining if a number is in an
array.

9

Importing Modules and Libraries/Packages

A module is a single portable piece of reusable code (a .py file) that
contains functions, classes, and variables.

A package is a collection of related modules stored in a common
directory tree. This term is often used interchangeably with library. We
can import entire packages, but more commonly, we import specific
modules from a package.

***Modules take time to load. Whenever possible, only import necessary
modules! This will also make your code more compact and readable.***

TIP: Combine all of your module imports at the top of your code.

10

How to Import
Simple import of a module:

import datetime

Import a class, function, or attributes from a module or package

from datetime import datetime
from numpy import array
from math import sqrt, pi

Import a module or package with an alias (for example I can later type np. instead
of numpy whenever I want to call a method from NumPy in my code.

import numpy as np
import pandas as pd

Combine from , import, and as. The following two lines are equivalent.

from matplotlib import pyplot as plt
import matplotlib.pyplot as plt

11

Creating a Module

You can also create your own module. This may be useful if you have a collection
of classes and/or functions that you have created yourself and want to use in
various codes but don’t want to copy/paste into each code individually. For
example, you could create a file called thermodynamics.py in the same directory
where your code is running, and the contents might look like this:

def thetatoT(theta,p):

theta in K, p in hPa.

p00, R, cp = 1000, 287, 1004
return theta / ((p00/p)**(R/cp))

#***************************************

def Ttotheta(T,p):

T in K, p in hPa.

p00, R, cp = 1000, 287, 1004
return T * ((p00/p)**(R/cp))

If we did this in a different code:

import thermodynamics as thm

thm.thetatoT(313,925)

We would get 306.1 without having to
copy and paste the functions inside of
thermodynamics.py into the new code.

12

Installing Packages into Existing Python
Environment

Sometimes, we may need to use packages that we did not originally install into our
mr2020 environment during setup on the first day of class. In this case, we would
need to enter the terminal and install the packages. There are two approaches to
this:

1) Install the package to the existing environment created in Module 0 (mr2020)
 Pros: All packages conveniently located in a single environment
 Cons: Packages might have conflicts with each other, effectively breaking the

environment.

2) Install an entirely new environment
 Pros: Prevent package incompatibility (e.g., one package calls a depreciated

method from another package)
 Cons: Can end up with several environments with difficulty remembering

which environment should be used for each task

13

Creating a New Environment

The instructions for installing a new environment are found in Module 0. To
review, the command to create the mr2020 environment was (one line):

conda create –c conda-forge –n mr2020 numpy scipy pandas matplotlib ipython
metpy xarray ipykernel

-c indicated the package repository to use and -n denoted the name of the new
environment on your local machine. Everything after mr2020 was a list of the
packages to be installed. You could add to this list, but you would not be able to
use the name mr2020 because you have already created an environment with this
name. Conda then automatically installs several other packages that the ones listed
depended upon.

14

Add to Existing Environment

Ensure that the mr2020 environment is activated in Visual Studio Code, then
access a terminal. At the start of the line that pops up in the command terminal,
you should see (mr2020) including the parentheses. If not, enter

conda activate mr2020

Then, once you are sure you are in the mr2020 environment, do the following

conda install -c conda-forge PKGNAME

Replacing PKGNAME with the actual name of the package. Sometimes, the package
is not found in the conda-forge repository, and you may need to use pip. If this is
the case, the package can be installed using the following command (you may need
to first install pip using conda like in the above command):

pip install PKGNAME

