
MR2020: Coding for METOC

Module 12: Pandas



2

Pandas is a Python library for data manipulation and analysis. It is best-used for 
tabular data and provides advanced functionality for data manipulation. Below is an 
example of what a key Pandas object, the DataFrame, looks like in Interactive 
Python.

What is Pandas?



3

Data Input

Pandas is capable of reading numerous types of tabular data files. Perhaps the 
most commonly opened are CSV or delimited text (TXT) files or Excel (XLS or 
XLSX) files.

# Read a CSV file
df = pd.read_csv(filename)

# Read a text file
df = pd.read_csv(filename,sep='\t’)

# Read Excel file
df = pd.read_excel(filename)

When reading a text file, the 
character(s) separating columns 
could be anything. If no sep is 
specified, Pandas will default to 
sep =‘,’ (comma).

Other common options:

sep =‘\t’ (tab)
sep =‘ ’ (space)
sep =‘;’ (semicolon)
sep =‘|’ (pipe)
sep =‘:’ (colon)

Otherwise, any custom text can 
also be used.



4

Pandas Classes

DataFrames are two-dimensional labeled data structure. You can almost think of 
them as a Python version of table or a spreadsheet.

Variable name containing DataFrame

NOTE: In this DataFrame, only a few random columns are displayed. The index is not 
displayed. We will look at Pandas indices later.



5

DataFrames are two-dimensional labeled data structure. You can almost think of 
them as a Python version of table or a spreadsheet.

Column headers



6

DataFrames are two-dimensional labeled data structure. You can almost think of 
them as a Python version of table or a spreadsheet.

Columns



7

DataFrames are two-dimensional labeled data structure. You can almost think of 
them as a Python version of table or a spreadsheet.

For large DataFrames, a row with “…” means that there are additional rows not 
displayed. You can change this to display all rows by running
pd.set_option('display.max_rows', None)
but be careful if you have a very large dataset!



8

Pandas Classes

Series are one-dimensional data arrays. They are like columns in a spreadsheet. A 
column in a Pandas DataFrame is equivalent to a Series.

A Series can be manipulated 
much like a NumPy array. For 
example, I can do

# Assign series to variable.
values = df.pt1

# Get the mean of the 
series.
values.mean()

# Index or slice the series.
values[:4]
values[8:12]



9

Pandas Classes

The Pandas Index is a label that uniquely identifies data in the rows or columns of 
Series or DataFrames. Usually, the index is the left-most column in a DataFrame or 
Series.

The index does not have to be 
numbers. It could be, for 
example, a sequence of strings. 
But each index must uniquely 
identify a single row (i.e., no 
repeating indices).



10

Accessing Data

We’ve already seen how to access a single column or to use indexing and slicing to 
access certain rows in a DataFrame or Series. Two-dimensional indexing can be done 
using the iloc or loc methods.

0 1 2 3 4 5

The labeled columns also have integer indices.

The index could also be a bunch of strings, like “a”, “b”, “c”, etc., instead of 0, 1, 2, 3.



11

Accessing Data

0 1 2 3 4 5

The iloc method uses the integer indices to identify 2D blocks of data.

# Using iloc
df.iloc[4:8,1:3]



12

Accessing Data

0 1 2 3 4 5

The loc method uses Index and Column labels to return data. In this case, 
the index (row labels) happen to also be integers.

# loc usage
df.loc[4:8,'y':'z']

NOTE: The loc method does not use normal Python indexing, so the last element in a 
slice (8 and ‘z’) in the example above is included.



13

Accessing Data

0 1 2 3 4 5

The rows and columns need not be consecutive. df.loc[4:8,['y','fileNum']]

NOTE: The loc method does not use normal Python indexing, so the last element in a 
slice (8 and ‘z’) in the example above is included.



14

Accessing Data

We can also use Boolean indexing to access certain rows.

Enter the condition as the index.

Notice how all the 
rows contain values of 
x that are greater than 
0.  The indices are also 
no longer consecutive 
and correspond to the 
rows where the 
condition was met.



15

Grouping

We can also group data to isolate rows that have some common value for in a given 
column. This is similar to grouping with Xarray since its grouping functionality is built 
on Pandas. 

For example, earlier we saw part of a DataFrame like the one below. A lot of the 
numbers in the parcelID column were the same.



16

Grouping

We can also group data to isolate rows that have some common value for in a given 
column. This is similar to grouping with Xarray since its grouping functionality is built 
on Pandas. 

For example, earlier we saw part of a DataFrame like the one below. A lot of the 
numbers in the parcelID column were the same.

What if we want to do some sort of 
analysis individually on all rows with 

the same parcelID? Suppose, for 
example, we want to find the mean 

‘z’ for each parcelID.



17

Grouping

We can also group data to isolate rows that have some common value for in a given 
column. This is similar to grouping with Xarray since its grouping functionality is built 
on Pandas. 

For example, earlier we saw part of a DataFrame like the one below. A lot of the 
numbers in the parcelID column were the same.

What if we want to do some sort of 
analysis individually on all rows with 

the same parcelID? Suppose, for 
example, we want to find the mean 

‘z’ for each parcelID.

df.groupby('parcelID').mean()



18

Note how parcelID is the index of the resulting DataFrame.

Each value is the mean for each column over all rows in 
the original DataFrame (df) with the parcelID listed on 
the left column.



19

Pivoting

In Pandas, pivoting is a technique that can be used to better visualize certain data. 
Consider the following example (generated by ChatGPT):

import pandas as pd

# Sample data
data = {
'Date': ['2023-01-01', '2023-01-01', '2023-01-02', '2023-01-02', '2023-01-03', '2023-01-03'],
'City': ['New York', 'Los Angeles', 'New York', 'Los Angeles', 'New York', 'Los Angeles'],
'Temperature': [32, 75, 30, 78, 28, 80]
}

df = pd.DataFrame(data)
print("Original DataFrame:")
print(df)



20

Pivoting

Notice how we have repeat dates and cities. Perhaps we want to give each city its own 
column and we want to use the date as the index.

pivot_df = df.pivot(index='Date', columns='City', values='Temperature')
print("Pivoted DataFrame:")
print(pivot_df)

In this new DataFrame object, how would you access the temperature on Jan. 1, 2023 
in New York using loc or iloc?


