
MR2020: Coding for METOC

Module 11: Xarray

What is Xarray?

Xarray is an open-source Python library designed for working with multi-
dimensional labeled datasets. Built on top of NumPy and Pandas. Ideal for N-
dimensional arrays (like climate data, oceanography, and more). Integrates
well with SciPy, Matplotlib, Dask.

We will often use Xarray to open data from a variety of formats, store the
data, query the data, and grab desired parts of the data.

Xarray also integrates well with Jupyter Notebooks or interactive Python.

User documentation: https://docs.xarray.dev/en/stable/

3

Clear, readable, and self-describing data. Easily access variables,
attributes, coordinates, and values for N-dimensional data!

Clear and readable data

4

1. NetCDF (Network Common Data Form)
- Commonly used format for variety of data in METOC community

2. GRIB/GRIB2 (GRIdded Binary)
- Often used as output for various model data. Advantage is smaller file size.

Disadvantage was more difficult to visualize, but this is no longer true.

3. HDF5 (Hierarchical Data Format)
- More flexible than NetCDF; more complex data organization capabilities

4. Zarr
- More modern data format similar to NetCDF and HDF. Works well with cloud

object stores such as in Amazon S3.

5. OPeNDAP (Open-source Project for a Network Data Access Protocol)
- Useful for reading specific subsets of remote datasets

6. CSV (Comma-Separated Values; Indirectly read via Pandas)
- Text files used for storing tabular data. Can be opened as a spreadsheet.
- Also useful to load as Pandas DataFrame (see Module 12).

Reading data – Supported File Formats

5

How do I access the contents of a file?

ds = xr.open_dataset(filename)

open_dataset will open many
filetypes including NetCDF, GRIB, HDF, and
OPeNDAP.

#GRIB
ds = xr.open_dataset('file.grib',engine='cfgrib’)

#OPenDAP
ds = xr.open_dataset('https://noaa.gov/example.nc',engine='pydap')

Sometimes a particular engine needs to
be specified, for example, with GRIB files
or those downloaded via OPeNDAP.

On future slides, we will
assume that the object
holding the data is ds.

6

How do I access the contents of a file?

#Zarr
ds = xr.open_zarr('file.zarr')

open_zarr will open Zarr files.

Some of the file types
require special methods.

For GeoTIFF raster files,
use rioxarray.

#CSV
df = pd.read_csv('file.csv')
ds = xr.Dataset.from_dataframe(df)

CSV files need to be opened with the
Pandas read_csv method but can be
converted to an Xarray Dataset using the
from_dataframe method.

7

Dataset:
 - A collection of multiple DataArrays with shared coordinates. Similar to an entire
NetCDF file.

What are some commonly used Xarray classes?

Note the dimensions and sizes of
each. We will return to this soon.

8

If I click this button for a
variable, I will get its
metadata. Click it again
to hide the metadata.

Click the drop-down arrows to
show or hide different parts of
the Dataset.

9

Clicking the attributes drop-down arrow will display metadata for the
entire file. Notice that 32 attributes are shown and compare that to the
number in parentheses next to Attributes on the previous slide.

10

DataArray:
 - N-dimensional array with labeled dimensions, coordinates, and attributes. Similar
to a single variable in a NetCDF file.

What are some commonly used Xarray classes?

In Interactive Python/Jupyter notebooks, to extract a single DataArray, use
object.varname

11

Coordinates:
 - Labels for the dimensions (e.g., time, latitude, longitude). Allows for meaningful
data slicing and indexing. Often the labels have the same names as the dimensions.

What are some commonly used Xarray classes?

Click to expandNames of corresponding dimensions

Names of coordinates

Dimensions and sizes for this variable

12

Exploring Datasets and DataArrays with code

Get variables in Dataset
ds.variables

Get attributes of Dataset
ds.attrs

Get coordinates of Dataset
ds.coords

Example: List all variables in Dataset
for var in ds.variables:
 print(var)

Extract data for a specific DataArray as NumPy array.
ds.T10M.values

13

Indexing and slicing with Coordinates

Xarray allows us to index and slice using the coordinates of a DataArray rather than
needing to know exact indices like when working with NumPy arrays.

Extract data for a specific variable as NumPy array.
ds.T10M.values

Extract data for T10M between 5N, 5S, 60E, and 80E.
ds.T10M.sel(lat=slice(-5,5), lon=slice(60,80))

We can do the same using positional indexing but you need
to remember which dimension corresponds to each coordinate
in the correct order.
ds.T10M.loc[:,-5:5,60:80]

Find time series of data at point closest to 10N, 120E.
ds.T10M.sel(lat=10, lon=120, method='nearest').values

Returns new DataArray with NaNs were condition not met.
t10m = ds.T10M # Assign entire DataArray to new variable.
t10m.where(t10m>300) # Returns same size array but NaN where <= 300

14

Simple computations along dimensions

Calculate the time mean at every location.
mean_temp = ds.T10M.mean(dim='time')

Calculate the time-zonal mean at every latitude.
In other words, calculate mean across two dimensions.
Calculate the time-zonal mean
time_zonal_mean = ds.T10M.mean(dim=['time', 'lon'])

Sum a value over time, assuming the variable 'precipitation'
exists.
total_precipitation = ds.precipitation.sum(dim='time')

Find the max or min at each location
t10m_max = ds.T10M.max(dim='time’)

15

Applying custom functions

Define a custom function, e.g., range (max - min)
def data_range(x,axis=None):
 return x.max(axis=axis) - x.min(axis=axis)

Apply the function along the time dimension
range_temp = ds.T10M.reduce(data_range, dim='time')

Use the reduce method with the function
name and dimension as inputs.

NOTE: This example could also be accomplished with
ds.T10M.reduce(np.ptp, dim='time')

16

Resampling and Grouping

Resample to daily mean using Pandas back-end
daily_mean = ds.T10M.resample(time='D').mean()

Grouping using Pandas back-end
hourly_mean = ds.T10M.groupby('time.hour').mean(dim=['time’])`

Resampling can be used if you want to combine data over a regular interval
longer than the existing time step between data points.

For example, suppose you had a data point for every day for 5 years, but you
wanted an average for each month (e.g., Jan. 2020, Feb. 2020, Mar. 2020,
etc.). You could resample to a monthly (‘M’) mean. You could also calculate a
median, max, min, etc.

Grouping can be used if you want to combine all data from a certain group.

For example, suppose you had daily data for 5 years, and you wanted to get
the average for all Februarys during those 5 years. Then you could use
groupby. As with resampling, you could compute a median, max, min, etc.
as well.

