
MR2020: Coding for METOC

Module 11: Xarray



What is Xarray?

Xarray is an open-source Python library designed for working with multi-
dimensional labeled datasets. Built on top of NumPy and Pandas. Ideal for N-
dimensional arrays (like climate data, oceanography, and more). Integrates 
well with SciPy, Matplotlib, Dask.

We will often use Xarray to open data from a variety of formats, store the 
data, query the data, and grab desired parts of the data.

Xarray also integrates well with Jupyter Notebooks or interactive Python.

User documentation: https://docs.xarray.dev/en/stable/
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Clear, readable, and self-describing data.  Easily access variables, 
attributes, coordinates, and values for N-dimensional data!

Clear and readable data
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1. NetCDF (Network Common Data Form)
- Commonly used format for variety of data in METOC community

2. GRIB/GRIB2 (GRIdded Binary)
- Often used as output for various model data. Advantage is smaller file size. 

Disadvantage was more difficult to visualize, but this is no longer true.

3. HDF5 (Hierarchical Data Format)
- More flexible than NetCDF; more complex data organization capabilities

4. Zarr
- More modern data format similar to NetCDF and HDF. Works well with cloud 

object stores such as in Amazon S3.

5. OPeNDAP (Open-source Project for a Network Data Access Protocol)
- Useful for reading specific subsets of remote datasets

6. CSV (Comma-Separated Values; Indirectly read via Pandas)
- Text files used for storing tabular data. Can be opened as a spreadsheet.
- Also useful to load as Pandas DataFrame (see Module 12).

Reading data – Supported File Formats
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How do I access the contents of a file?

ds = xr.open_dataset(filename)

open_dataset will open many 
filetypes including NetCDF, GRIB, HDF, and 
OPeNDAP.

#GRIB
ds = xr.open_dataset('file.grib',engine='cfgrib’)

#OPenDAP
ds = xr.open_dataset('https://noaa.gov/example.nc',engine='pydap')

Sometimes a particular engine needs to 
be specified, for example, with GRIB files 
or those downloaded via OPeNDAP. 

On future slides, we will 
assume that the object 
holding the data is ds.
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How do I access the contents of a file?

#Zarr
ds = xr.open_zarr('file.zarr')

open_zarr will open Zarr files.

Some of the file types 
require special methods.

For GeoTIFF raster files, 
use rioxarray.

#CSV
df = pd.read_csv('file.csv')
ds = xr.Dataset.from_dataframe(df)

CSV files need to be opened with the 
Pandas read_csv  method but can be 
converted to an Xarray Dataset using the 
from_dataframe  method.



7

Dataset:
 - A collection of multiple DataArrays with shared coordinates. Similar to an entire 
NetCDF file.

What are some commonly used Xarray classes?

Note the dimensions and sizes of 
each. We will return to this soon.
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If I click this button for a 
variable, I will get its 
metadata.  Click it again 
to hide the metadata.

Click the drop-down arrows to 
show or hide different parts of 
the Dataset.
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Clicking the attributes drop-down arrow will display metadata for the 
entire file. Notice that 32 attributes are shown and compare that to the 
number in parentheses next to Attributes on the previous slide.
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DataArray:
 - N-dimensional array with labeled dimensions, coordinates, and attributes. Similar 
to a single variable in a NetCDF file.

What are some commonly used Xarray classes?

In Interactive Python/Jupyter notebooks, to extract a single DataArray, use 
object.varname
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Coordinates:
 - Labels for the dimensions (e.g., time, latitude, longitude). Allows for meaningful 
data slicing and indexing. Often the labels have the same names as the dimensions.

What are some commonly used Xarray classes?

Click to expandNames of corresponding dimensions

Names of coordinates

Dimensions and sizes for this variable
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Exploring Datasets and DataArrays with code

# Get variables in Dataset
ds.variables

# Get attributes of Dataset
ds.attrs

# Get coordinates of Dataset
ds.coords

# Example: List all variables in Dataset
for var in ds.variables:
 print(var)

# Extract data for a specific DataArray as NumPy array.
ds.T10M.values
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Indexing and slicing with Coordinates

Xarray allows us to index and slice using the coordinates of a DataArray rather than 
needing to know exact indices like when working with NumPy arrays.

# Extract data for a specific variable as NumPy array.
ds.T10M.values

# Extract data for T10M between 5N, 5S, 60E, and 80E.
ds.T10M.sel(lat=slice(-5,5), lon=slice(60,80))

# We can do the same using positional indexing but you need
# to remember which dimension corresponds to each coordinate
# in the correct order.
ds.T10M.loc[:,-5:5,60:80]

# Find time series of data at point closest to 10N, 120E.
ds.T10M.sel(lat=10, lon=120, method='nearest').values

# Returns new DataArray with NaNs were condition not met.
t10m = ds.T10M # Assign entire DataArray to new variable.
t10m.where(t10m>300) # Returns same size array but NaN where <= 300
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Simple computations along dimensions 

# Calculate the time mean at every location.
mean_temp = ds.T10M.mean(dim='time')

# Calculate the time-zonal mean at every latitude.
# In other words, calculate mean across two dimensions.
# Calculate the time-zonal mean
time_zonal_mean = ds.T10M.mean(dim=['time', 'lon'])

# Sum a value over time, assuming the variable 'precipitation' 
exists.
total_precipitation = ds.precipitation.sum(dim='time')

# Find the max or min at each location
t10m_max = ds.T10M.max(dim='time’)
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Applying custom functions

# Define a custom function, e.g., range (max - min)
def data_range(x,axis=None):
 return x.max(axis=axis) - x.min(axis=axis)

# Apply the function along the time dimension
range_temp = ds.T10M.reduce(data_range, dim='time')

Use the reduce method with the function 
name and dimension as inputs.

# NOTE: This example could also be accomplished with
# ds.T10M.reduce(np.ptp, dim='time')
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Resampling and Grouping

# Resample to daily mean using Pandas back-end
daily_mean = ds.T10M.resample(time='D').mean()

# Grouping using Pandas back-end
hourly_mean = ds.T10M.groupby('time.hour').mean(dim=['time’])`

Resampling can be used if you want to combine data over a regular interval 
longer than the existing time step between data points. 

For example, suppose you had a data point for every day for 5 years, but you 
wanted an average for each month (e.g., Jan. 2020, Feb. 2020, Mar. 2020, 
etc.). You could resample to a monthly (‘M’) mean. You could also calculate a 
median, max, min, etc. 

Grouping can be used if you want to combine all data from a certain group.

For example, suppose you had daily data for 5 years, and you wanted to get 
the average for all Februarys during those 5 years. Then you could use 
groupby. As with resampling, you could compute a median, max, min, etc. 
as well.


