
MR2020: Coding for METOC

Module 10: Parallel Computing

2

Why execute code in parallel?

Modern CPUs and GPUs contain multiple cores, meaning that a
single processing unit can execute multiple processes
simultaneously.

For operations in your code that are repeated and are
independent of one another, we can use Python’s native
libraries for running several operations at the same time instead
of one after another. For intensive jobs, this can result in
significant speed ups.

Speeding up repeated tasks

End!
Computing in serial: One process at a
time on a single core to get to the end.

Speeding up repeated tasks

End!
Computing in parallel: Have several cores run a
few processes each and then combine. Each
process has its own memory allocation.

Combine

Process 1

Process 2

Process 3

Process 4

Process 5

5

Methods in Multiprocessing

Process: Represents an individual process. These can be manually started. Can be
started, joined, and terminated.

Pool: Creates and manages a pool of worker processes. Simplifies parallel execution
with methods like map, apply, starmap. Does not require starting individual processes.

Queue: Allows processes to communicate by sending and receiving messages (First In,
First Out; i.e., FIFO).

Pipe: Establishes a two-way communication channel between processes.

Manager: Enables sharing data (e.g., lists, dictionaries) between processes.

Common Start Methods

fork: (Default on Unix) Child process is a copy of the parent.

spawn: (Default on Windows & macOS) Starts with a fresh Python interpreter.

Processes vs. Threads

• Independent execution units
with their own memory
space.

• Created using multiprocessing
in Python.

• Suitable for CPU-bound tasks.

Process

Each blue box is one CPU core.

• Lightweight units of execution
within a process, sharing the
same memory space.

• Created using threading in
Python.

• Suitable for I/O-bound tasks.

Threads

For most METOC applications, we will avoid threads!

7

Starting a Multiprocessing Pool
from multiprocessing import Pool, set_start_method
from time import time

def square(x):
 return x * x

if __name__ == "__main__":
Explicitly set the start method to 'spawn'
Important for some Macs and Windows!
set_start_method('spawn', force=True)

t0 = time()
with Pool(processes=4) as pool:
 results = pool.map(square, range(1000))
t1 = time()
msg = 'Parallel compute time: ' + str(t1-t0) + ' seconds.'
print(msg)
print(results[:10])

Now do this as a for-loop
t0 = time()
results = []
for i in range(1000):
 results.append(square(i))
t1 = time()
msg = 'Serial compute time: ' + str(t1-t0) + ' seconds.'
print(msg)
print(results[:10])

Multiprocessing is the name of
the module to load, and Pool is
the method you will often use
to run code in parallel.

set_start method is called
below and is required on a Mac
or Windows machine but not
on a Linux machine.

Not required for parallel
computing. Using this to
compare time to run with and
without parallelized code.

8

Starting a Multiprocessing Pool
from multiprocessing import Pool, set_start_method
from time import time

def square(x):
 return x * x

if __name__ == "__main__":
Explicitly set the start method to 'spawn'
Important for some Macs and Windows!
set_start_method('spawn', force=True)

t0 = time()
with Pool(processes=4) as pool:
 results = pool.map(square, range(1000))
t1 = time()
msg = 'Parallel compute time: ' + str(t1-t0) + ' seconds.'
print(msg)
print(results[:10])

Now do this as a for-loop
t0 = time()
results = []
for i in range(1000):
 results.append(square(i))
t1 = time()
msg = 'Serial compute time: ' + str(t1-t0) + ' seconds.'
print(msg)
print(results[:10])

set_start method is called here and is
required on a Mac or Windows machine
but not on a Linux machine. The line
should be written as shown. ChatGPT may
not include this unless you specify that
you are running on a Mac/Windows and
need to include this line.

9

Starting a Multiprocessing Pool
from multiprocessing import Pool, set_start_method
from time import time

def square(x):
 return x * x

if __name__ == "__main__":
Explicitly set the start method to 'spawn'
Important for some Macs and Windows!
set_start_method('spawn', force=True)

t0 = time()
with Pool(processes=4) as pool:
 results = pool.map(square, range(1000))
t1 = time()
msg = 'Parallel compute time: ' + str(t1-t0) + ' seconds.'
print(msg)
print(results[:10])

Now do this as a for-loop
t0 = time()
results = []
for i in range(1000):
 results.append(square(i))
t1 = time()
msg = 'Serial compute time: ' + str(t1-t0) + ' seconds.'
print(msg)
print(results[:10])

with is a Python keyword! It
is useful for resource
management. This line will
temporarily set up a Pool
(named ‘pool’) This example
will set up 4 individual
processes that can run in
parallel.

Note that the line ends with a
colon and code belonging to
with must be indented.

10

Starting a Multiprocessing Pool
from multiprocessing import Pool, set_start_method
from time import time

def square(x):
 return x * x

if __name__ == "__main__":
Explicitly set the start method to 'spawn'
Important for some Macs and Windows!
set_start_method('spawn', force=True)

t0 = time()
with Pool(processes=4) as pool:
 results = pool.map(square, range(1000))
t1 = time()
msg = 'Parallel compute time: ' + str(t1-t0) + ' seconds.'
print(msg)
print(results[:10])

Now do this as a for-loop
t0 = time()
results = []
for i in range(1000):
 results.append(square(i))
t1 = time()
msg = 'Serial compute time: ' + str(t1-t0) + ' seconds.'
print(msg)
print(results[:10])

This line applies the method
map to the object pool.

How does this work? pool
houses 4 processes, so this line
applies range(1000) as inputs
to the function square. Instead
of doing this one element at a
time, it does so 4 elements at a
time.

11

Starting a Multiprocessing Pool
from multiprocessing import Pool, set_start_method
from time import time

def square(x):
 return x * x

if __name__ == "__main__":
Explicitly set the start method to 'spawn'
Important for some Macs and Windows!
set_start_method('spawn', force=True)

t0 = time()
with Pool(processes=4) as pool:
 results = pool.map(square, range(1000))
t1 = time()
msg = 'Parallel compute time: ' + str(t1-t0) + ' seconds.'
print(msg)
print(results[:10])

Now do this as a for-loop
t0 = time()
results = []
for i in range(1000):
 results.append(square(i))
t1 = time()
msg = 'Serial compute time: ' + str(t1-t0) + ' seconds.'
print(msg)
print(results[:10])

How does the time required
for this calculation differ if we
run the same thing serially in a
for-loop? What happens if we
change the 1000 to something
big like 10000000?

12

import random
from multiprocessing import Pool, cpu_count, set_start_method

def monte_carlo_pi_part(num_samples):
 count_inside_circle = 0
 for _ in range(num_samples):
 x, y = random.uniform(-1, 1), random.uniform(-1, 1)
 if x*x + y*y <= 1:
 count_inside_circle += 1
 return count_inside_circle

def estimate_pi(total_samples):
 # Determine the number of processes and samples per process

num_processes = 2 # Maximum value is cpu_count()
samples_per_process = total_samples // num_processes

 with Pool(num_processes) as pool:
 # Perform the Monte Carlo simulation in parallel
 counts = pool.map(monte_carlo_pi_part, [samples_per_process] * num_processes)
 # Aggregate results from all processes
 total_count_inside_circle = sum(counts)
 return (4.0 * total_count_inside_circle) / total_samples

if __name__ == "__main__":
total_samples = 1000

set_start_method('spawn', force=True)
print("Estimating Pi with Monte Carlo simulation...")
t0 = time()
estimated_pi = estimate_pi(total_samples)
t1 = time()

print('Time required: ' + str(t1-t0) + ' seconds')
print(f"Estimated Pi: {estimated_pi}")

How do changing
num_processes and
total_samples impact run
time?

13

Parallelizing functions with multiple inputs

Many times you want to execute a function for which either

a) There are multiple input values
that are paired together, and both
are different each time the function
is called.

b) You have multiple inputs, and all
but one remain the same each time
the function is called.

Use starmap. Use partial from functools.

14

Using starmap.

from multiprocessing import Pool

Define a function that takes two arguments
def add(x, y):
 return x + y

if __name__ == "__main__":
List of argument pairs
inputs = [(1, 2), (3, 4), (5, 6), (7, 8)]

Create a pool of 4 worker processes
with Pool(processes=4) as pool:

Use starmap to apply the 'add' function to each
pair of inputs in parallel
results = pool.starmap(add, inputs)
Print the results
print(results)

Both input variables
(x and y) change as
a pair.

15

Using starmap.

from multiprocessing import Pool

Define a function that takes two arguments
def add(x, y):
 return x + y

if __name__ == "__main__":
List of argument pairs
inputs = [(1, 2), (3, 4), (5, 6), (7, 8)]

Create a pool of 4 worker processes
with Pool(processes=4) as pool:

Use starmap to apply the 'add' function to each
pair of inputs in parallel
results = pool.starmap(add, inputs)
Print the results
print(results)

Inputs to starmap
are the function
name and one
input variable.

16

Using starmap.

from multiprocessing import Pool

Define a function that takes two arguments
def add(x, y):
 return x + y

if __name__ == "__main__":
List of argument pairs
inputs = [(1, 2), (3, 4), (5, 6), (7, 8)]

Create a pool of 4 worker processes
with Pool(processes=4) as pool:

Use starmap to apply the 'add' function to each
pair of inputs in parallel
results = pool.starmap(add, inputs)
Print the results
print(results)

Inputs are defined here as a sequence
of tuples. For each tuple, the first
number gets mapped to x and the
second number gets mapped to y.

17

Using partial.

from multiprocessing import Pool
from functools import partial

Function to calculate the area of a rectangle
def calculate_area(width, height):
 return width * height

if __name__ == "__main__":
Height is constant
constant_height = 10

List of varying widths
widths = [2, 4, 6, 8, 10]

Partially apply the height constant using `partial`
calculate_area_with_height = partial(calculate_area, height=constant_height)

Create a pool of worker processes
with Pool(processes=4) as pool:

Use `map` to apply the function to the list of widths
results = pool.map(calculate_area_with_height, widths)
Print the results
print(results)

We still have two
input variables, but
only one (width)
changes.

18

Using partial.

from multiprocessing import Pool
from functools import partial

Function to calculate the area of a rectangle
def calculate_area(width, height):
 return width * height

if __name__ == "__main__":
Height is constant
constant_height = 10

List of varying widths
widths = [2, 4, 6, 8, 10]

Partially apply the height constant using `partial`
calculate_area_with_height = partial(calculate_area, height=constant_height)

Create a pool of worker processes
with Pool(processes=4) as pool:

Use `map` to apply the function to the list of widths
results = pool.map(calculate_area_with_height, widths)
Print the results
print(results)

Since map can only accept a single input
variable, and we don’t want to copy
constant_height to memory for each
width, we need to create a bridge
function using partial.

19

Using partial.

from multiprocessing import Pool
from functools import partial

Function to calculate the area of a rectangle
def calculate_area(width, height):
 return width * height

if __name__ == "__main__":
Height is constant
constant_height = 10

List of varying widths
widths = [2, 4, 6, 8, 10]

Partially apply the height constant using `partial`
calculate_area_with_height = partial(calculate_area, height=constant_height)

Create a pool of worker processes
with Pool(processes=4) as pool:

Use `map` to apply the function to the list of widths
results = pool.map(calculate_area_with_height, widths)
Print the results
print(results)

Call the function you want to execute in
parallel, and then list all of the constant
variables (can be more than one)
separated by commas.

20

Using partial.

from multiprocessing import Pool
from functools import partial

Function to calculate the area of a rectangle
def calculate_area(width, height):
 return width * height

if __name__ == "__main__":
Height is constant
constant_height = 10

List of varying widths
widths = [2, 4, 6, 8, 10]

Partially apply the height constant using `partial`
calculate_area_with_height = partial(calculate_area, height=constant_height)

Create a pool of worker processes
with Pool(processes=4) as pool:

Use `map` to apply the function to the list of widths
results = pool.map(calculate_area_with_height, widths)
Print the results
print(results)

The constant input variables take the format
function local name = global name

21

Using partial.

from multiprocessing import Pool
from functools import partial

Function to calculate the area of a rectangle
def calculate_area(width, height):
 return width * height

if __name__ == "__main__":
Height is constant
constant_height = 10

List of varying widths
widths = [2, 4, 6, 8, 10]

Partially apply the height constant using `partial`
calculate_area_with_height = partial(calculate_area, height=constant_height)

Create a pool of worker processes
with Pool(processes=4) as pool:

Use `map` to apply the function to the list of widths
results = pool.map(calculate_area_with_height, widths)
Print the results
print(results)

Finally, call pool.map,
passing the bridge
function name and the
iterable variable
(widths) as inputs.

