
MR2020: Python for METOC

Module 0: Getting Started

Summer Quarter 2024

2

”Why do I need to code? I’m never going to use
this in the fleet.”

But you will use it during your time at NPS. METOC theses
inherently involve data analysis—sometimes of very large amounts
of data. Coding—in Python, MATLAB, Fortran, Perl, C++,
JavaScript, or whatever language is suitable—is essential for
completing a thesis.

Coding is an essential skill in the 21st century. Programming
languages are the underpinning that holds today’s technologically
dependent world together. Perhaps brushing up on this skill a little
could come into use after retirement…

3

”Why Python?”

Python is free and open-source and has a huge community support
and software development base. There is almost nothing you can
think of that can’t be done in Python. While there are many free,
open-source languages and compilers, Python is known as an easy-
to-read and intuitive language. It is also one of the preferred
languages of infrastructure development for machine learning.

Some languages (e.g., MATLAB, Mathematica) are proprietary. For
large users like the Navy, annual licensing can cost a significant
amount. However, anything that can be done in MATLAB can also
be done in Python. MATLAB’s functionality is especially easy to
replicate given the recent rise of generative AI such as GPT.

A few basic
tools

4

Course Objectives

1. Learn basics of

programming data

structures and control

flows

2. Learn to develop code

while teaming with

generative AI

3. Become familiar with

using state of the art

software development

platforms

5

Setup

We need a few tools to get started:

1. Visual Studio Code (configure)

2. Miniconda (download then setup python environment)

3. GitLab repository (through NPS login at gitlab.nps.edu)

4. OpenAI ChatGPT account (online interface)

Please read through each slide carefully and don’t just ignore
stuff and jump ahead!

6

Click the magnifying glass in the top right of the Desktop; Type Visual Studio Code and
press enter. A Visual Studio Code start screen like the one displayed below will appear.

File browser

Git button

Extensions

Tabs: Codes that are open will show up here and can be
closed with the X.

Don’t click the Open Folder button yet!

7

Choose the extensions button on the left-
hand side. Type in Python in the search bar
near the top. Install the Python extension
from Microsoft.

Repeat by searching for jupyter and installing.
This is the example shown to the right.

Finally, install the MATLAB extension from
Mathworks.

The creator of the extension (e.g., Microsoft,
Mathworks) can be seen just left of the install
button.

Search bar

8

Configuring git (This is the hardest part.)

1. Open a new terminal. Type in “bash” and hit enter.

2. Enter “xcode-select --install” and hit enter. Click install and accept the license
agreement and any other prompts. The download may take a few minutes. While
it’s running skip to the next slide, and we’ll install miniconda while this download
and install is underway.

9

Install miniconda

1. Close the old terminal and open a new terminal.

2. Enter ”pwd” (In this class, whenever you see “” for entering something into a Linux command
terminal, don’t enter the “”). You should see something like “/Users/scott.powell” show up,
replacing scott.powell with your name. If for some reason you don’t enter “cd
/Users/NPSLOGIN”, replacing NPSLOGIN with your real login name.

3. Copy and paste the following code into the terminal:

mkdir -p ~/miniconda3
curl https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh -o ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm -rf ~/miniconda3/miniconda.sh

4. You should get a message that says ”done installation finished.” Check the next slide for what
your terminal window might look like*. If you do, copy and paste the following code (After step 4,
you should get something that looks like the screen shown in two slides.)

~/miniconda3/bin/conda init bash
~/miniconda3/bin/conda init zsh

5. Close the terminal window.

10

You should see something like this between Steps 3 and 4.

11

Something like this
will appear after Step
4.

12

Create a Python environment

1. Open a new terminal. Enter “zsh”. You should see something like “(base)” appear at
the beginning of the command line after this, meaning that miniconda is functioning
in the terminal and that the base environment is active. We’re not going to use the
base environment though. We’re going to create a new one.

2. Enter the following command to add the package repository conda-forge to your
download options:

 conda config --add channels conda-forge

3. Then enter the following to create a Python environment using packages in that repo:

 conda create –c conda-forge –n mr2020 numpy scipy pandas matplotlib ipython
metpy xarray ipykernel

This will install the Python packages numpy, scipy, pandas, matplotlib, ipython, metpy,
and xarray from the channel/package repository called conda_forge. Don’t worry about
installing everything you may ever need. You can always add on to your environment
later. The ”-n mr2020” means that this Python environment will be called mr2020. This
will be useful to know soon. A bunch of stuff will pop up. Enter ‘y’, press enter, and wait
for the transaction to execute. When done, close out the terminal (Command + q.)

13

3. Quit Visual Studio Code and reopen it.

4. Click on the git icon. You should now see a button called
“Initialize Repository” or “Clone Repository”. This means that
your git installation worked!

5. In a terminal (open a new one if needed), enter the
following commands (hit enter 3 times after the first line
when prompted):

 ssh-keygen –t ed25519 –C your_NPSname@nps.edu
 cd ~/.ssh
 less id_ed25519.pub

After the less command you
should see something like
the below. Expand the
window to get everything on
one line if necessary and
leave the window open.
We’ll come back to it soon.

Configuring git (This is the hardest part.)

14

6. Open a browser
window (e.g., Google
Chrome, Safari). Go to
gitlab.nps.edu and
Click the “NPS
Account” button. Enter
your login credentials
and go through the 2FA
prompts using
Microsoft
Authenticator.

15

7. In the browser, enter the circular avatar icon in Gitlab (see screenshot), select
Preferences. After a new page loads, select “SSH keys” from the new menu bar on
the left.

16

8. Click ”Add a key”.

9. Copy and paste the entire
SSH key from the open
terminal window into the Key
box as shown to the right.

For Title, enter the name of the
machine you are working on.
It will be the part in the red
box in the terminal inset in
bottom right of image.

Then, click Add Key.

17

10. In Visual Studio Code, look at the menu bar at the top and open a new terminal.

18

11. In the VSC terminal window, enter ssh –T git@gitlab.nps.edu. Type and enter
“yes” when prompted. You should get a message that says, “Welcome to Gitlab,
@username!”

Make sure that TERMINAL is white with a blue line beneath it.

19

12. Back in the browser window with Gitlab, hit the fox in the top left. In the top right
of the screen that displays, there is a blue button that says, “New Project”. Click it.
Follow the screenshots to create a repository called “mr2020”. Under Project name,
enter “mr2020”. Under ”Project URL”, choose your user name from the drop-down
menu. Under “Project slug”, enter ”mr2020”. Then, click the blue “Create Project”
button.

20

13. Back in Visual Studio Code, in the terminal enter the following (replacing
scott.powell with your NPS login name):
 git config --global user.name scott.powell
 git config --global user.email scott.powell@nps.edu

21

14. We need to clone the repo. Right-click on your Desktop and create a new folder. Call
it MR2020. In the browser, click the blue “Code” button in the top right, and copy the
text under “Clone with SSH”.

22

15. Back in VSC, in the terminal, type and enter the following two lines one at a time:

cd
cd Desktop
mkdir MR2020
cd MR2020

Then, in the terminal, type in git clone and paste the command you copied from the
browser into the terminal as seen below and press enter. (See below.) Your repo is now
set up and linked to VSC!

23

16. Next, let’s put something meaningful into the repository you just created. Click the
File browser button in VSC. Click the blue “Open Folder” button. Choose “Desktop ->
MR2020 -> mr2020”. If prompted, trust the author (yourself). After a few seconds, you
should see a README file populate the file browser since your repo was initialized with
one.

17. If you hover over the area near the “MR2020” text in the upper right (see red box on
image below), you’ll see some icons pop up nearby (in the orange box). See the image
below for details about these icons.

Updating your repo and pushing to GitLab

Create new file

Create new
directory/folder

Refresh directory

Note proximity to File
browser button in top left
of VSC window.

24

18. Click the new directory button and create a directory called “testcode”. Click on that
folder, then create a new file and call it “test.py”. Click on test.py to cause a tab to open
to the right.

19. In the bottom right, hit “Select Interpreter”. Select mr2020 from the dropdown
menu. This is the Python environment you created earlier.

25

20. Enter the following code for test.py:

A = 2

After you do so, a little blue bubble with a number in it should appear on the git icon
on the left menu bar of VSC. (There are blue bubbles for other things shown in the
image above but not for the git icon.) The number in the git icon bubble indicates how
many files have been changed since the last push to GitLab, i.e., how many files have
progress that has not been backed up.

26

21. Click the git button. You will see a list of files that need to be pushed to
GitLab for backup. Click the plus next to the file you want to push. It will move
to a tab labeled “Staged Changes”. Enter a message in the box above the blue
Commit button (such as “Initial test commit”. Then click Commit.

27

22. You haven’t finished the push
yet! Make sure you click the Sync
button(red box in the image below)
after the Commit button goes
away. If no sync button appears,
look in the bottom left of the VSC
window and click the up arrow
with a number next to it (orange
box in image below).

Refresh the browser window in
Gitlab, and you should see your
new directory appear. Inside the
directory, if you click it, you will
see the test.py code. You may now
close out the browser window. You
should not need to login to Gitlab
via the browser anymore.

28

Running code in an interactive window

In VSC, highlight the code A = 2 in test.py. Select “Run in Interactive Window” -> “Run
Selection/Line in Interactive Window” as shown below.

29

Click install to install ipykernel into the environment if prompted. If not, continue. If
asked if you want to periodically run “git fetch”, click no.

30

You should get something like the screen below, with an interactive window appearing
to the right of the code. You can enter or copy/paste other snippets of code into the box
at the bottom of the interactive window and either pressure Command + Enter or press
the play button to execute the code. You can close the interactive window by pressing
the x on the tab near the top of the screen that says “Interactive-1”.

31

Get a ChatGPT account

Go to chatgpt.com in a browser. Use your existing login, or if you don’t have one, sign
up for account by clicking the green button in the bottom left of the screen.

