MR3522: Remote Sensing of the Atmosphere and Ocean

Geostationary Satellites: GOES and Himawari

Main Topics

- Instrumentation
- Bands or channels used
- Absorption and scattering of radiation in GOES bands

42,164 km

Features of New GOES and Himawari Satellites

- 16 channels or bands; no radiometer or "sounder" needed
- Can take full disk image every 5 minutes, or concurrently, disk images every 15 minutes, U.S. every 5 minutes, and two mesoscale regions every 30–60 seconds.
- Compared to 3rd generation, GOES-16 and GOES-17 have 3x more channels (spectral resolution), 4x the spatial resolution (up to 0.5 km spacing in the red band), and ~5x the temporal resolution.

TABLE I. Summary of the wavelengths, resolution, and sample use and heritage instrument(s) of the ABI bands. The minimum and maximum wavelength range represent the full width at half maximum (FWHM or 50%) points. [The Instantaneous Geometric Field Of View (IGFOV).]

Future GOES imager (ABI) band	Wavelength range (µm)	Central wavelength (µm)	Nominal subsatellite IGFOV (km)	Sample use	Heritage instrument(s)
T.	0.45-0.49	0.47	9	Daytime aerosol over land, coastal water mapping	MODIS
2	0.59-0.69	0.64	0.5	Daytime clouds fog, inso- lation, winds	Current GOES imager/ sounder
3	0.846-0.885	0.865	0	Daytime vegetation/burn scar and aerosol over water, winds	VIIRS, spectrally modified AVHRR
4	1.371-1.386	1.378	2	Daytime cirrus cloud	VIIRS, MODIS
5	1.58-1.64	1.61	1	Daytime cloud-top phase and particle size, snow	VIIRS, spectrally modified AVHRR
6	2.225-2.275	2.25	2	Daytime land/cloud properties, particle size, vegetation, snow	VIIRS, similar to MODIS
7	3.80-4.00	3.90	2	Surface and cloud, fog at night, fire, winds	Current GOES imager
8	5.77-6.6	6.19	2	High-level atmospheric water vapor, winds, rainfall	Current GOES imager
9	6.75-7.15	6.95	2	Midlevel atmospheric water vapor, winds, rainfall	Current GOES sounder
10	7.24-7.44	7.34	2	Lower-level water vapor, winds, and SO ₂	Spectrally modified cur- rent GOES sounder
.0	8.3-8.7	8.5	2	Total water for stability, cloud phase, dust, SO ₂ rainfall	MAS
12	9.42-9.8	9.61	2	Total ozone, turbulence, and winds	Spectrally modified cur- rent sounder
13	10.1-10.6	10.35	2	Surface and cloud	MAS
14	10.8-11.6	11.2	2	Imagery, SST, clouds, rainfall	Current GOES sounder
15	11.8-12.8	12.3	2	Total water, ash, and SST	Current GOES sounder
16	13.0-13.6	13.3	2	Air temperature, cloud heights and amounts	Current GOES sounder/ GOES-12+ imager

NOAA/NASA

Himawari has no 1.378 μm band, but has a "green" band at 0.51 μm.

> Source: Schmit, T.J., Gunshor, M.M., Menzel, W.P., Gurka, J.J., Li, J., Bachmeier, A.S., 2005, Introducing the Next-Generation Advanced Baseline Imager on GOES-R, Bulletin of the American Meteorological Society, v. 86, p. 1079-1096.

GOES-East (16)

2020-07-09 17:50:24 UTC

Tenperature

GOES-West (17)

2020-07-09 17:40:32 UTC

Tenperature

Himawari-8

2020-07-09 17:30:00 UTC

Tenperature

SAT : INSAT-3D IMG

INSAT-3D

09-07-2020/(2200 to 2226) GMT

Meteosat-8

-20
740

Meteosat-11

MR3522: Remote Sensing of the Atmosphere and Ocean

GOES Advanced Baseline Imager Shortwave Bands

Main Topics

- Utility of GOES shortwave bands
- Location of spectral response functions
- Reflection off the surface

TABLE I. Summary of the wavelengths, resolution, and sample use and heritage instrument(s) of the ABI bands. The minimum and maximum wavelength range represent the full width at half maximum (FWHM or 50%) points. [The Instantaneous Geometric Field Of View (IGFOV).]

Future GOES imager (ABI) band	Wavelength range (µm)	Central wavelength (µm)	Nominal subsatellite IGFOV (km)	Sample use	Heritage instrument(s)
T.	0.45-0.49	0.47	9	Daytime aerosol over land, coastal water mapping	MODIS
2	0.59-0.69	0.64	0.5	Daytime clouds fog, inso- lation, winds	Current GOES imager/ sounder
3	0.846-0.885	0.865	0	Daytime vegetation/burn scar and aerosol over water, winds	VIIRS, spectrally modified AVHRR
4	1.371-1.386	1.378	2	Daytime cirrus cloud	VIIRS, MODIS
5	1.58-1.64	1.61	1	Daytime cloud-top phase and particle size, snow	VIIRS, spectrally modified AVHRR
6	2.225-2.275	2.25	2	Daytime land/cloud properties, particle size, vegetation, snow	VIIRS, similar to MODIS
7	3.80-4.00	3.90	2	Surface and cloud, fog at night, fire, winds	Current GOES imager
8	5.77-6.6	6.19	2	High-level atmospheric water vapor, winds, rainfall	Current GOES imager
9	6.75-7.15	6.95	2	Midlevel atmospheric water vapor, winds, rainfall	Current GOES sounder
10	7.24-7.44	7.34	2	Lower-level water vapor, winds, and SO ₂	Spectrally modified cur- rent GOES sounder
- 11	8.3-8.7	8.5	2	Total water for stability, cloud phase, dust, SO ₂ rainfall	MAS
12	9.42-9.8	9.61	2	Total ozone, turbulence, and winds	Spectrally modified cur- rent sounder
13	10.1-10.6	10.35	2	Surface and cloud	MAS
14	10.8-11.6	11.2	2	Imagery, SST, clouds, rainfall	Current GOES sounder
15	11.8-12.8	12.3	2	Total water, ash, and SST	Current GOES sounder
16	13.0-13.6	13.3	2	Air temperature, cloud heights and amounts	Current GOES sounder/ GOES-12+ imager

NOAA/NASA

Himawari has no 1.378 μm band, but has a "green" band at 0.51 μm.

> Source: Schmit, T.J., Gunshor, M.M., Menzel, W.P., Gurka, J.J., Li, J., Bachmeier, A.S., 2005, Introducing the Next-Generation Advanced Baseline Imager on GOES-R, Bulletin of the American Meteorological Society, v. 86, p. 1079-1096.

RGB VALUES FOR VISIBLE WAVELENGTHS by Dan Bruton (http://www.physics.sfasu.edu/astro/color/spectra.html)

Spectral response functions (SRFs) describe the sensitivity of each spectral band to radiation as a function of wavelength.

Band 2 (640 nm)

2020-07-10 15:22:25 UTC

2020-07-10 15:19:25 UTC

The general radiative transfer solution for a scattering atmosphere is:

$$L_{t}(\lambda,\theta,\phi) = L_{0}(\lambda,\theta,\phi)e^{-\delta(\lambda)/\mu} + \int_{0}^{\delta(\lambda)} \frac{\int_{4\pi} \gamma_{s}(\mathbf{r},\mathbf{r}',\lambda,\mathbf{X})L(\mathbf{r}',\lambda,\mathbf{X})d\Omega'}{q_{e}(\lambda,z)}e^{-\delta(\lambda,z)/\mu}\frac{d\delta}{\mu}$$

Where the surface radiance (L₀) is due to reflection of the downward radiative flux at the surface (read section 3.6 - Kidder & Vonder Haar) This is for reflected solar radiation only!

The reflection properties of various surfaces can be a complex function of incoming and outgoing directions

... commonly called the bidirectional reflectance, γ_r (θ_r , ϕ_r ; θ_i , ϕ_i)

Common approximations to surface reflectance include:

Lambertian or isotropic reflectance

Specular or "mirror-like"

Apr 4, 2003 13:50 LT

Apr 14, 2003 13:40 LT

Band 2 (640 nm)

2020-07-10 15:22:25 UTC

http://cimss.ssec.wisc.edu/goes/OCLOFactShe etPDFs/ABIQuickGuide_Band02.pdf

Band 1 (470 nm)

2020-07-10 15:25:25 UTC

http://cimss.ssec.wisc.edu/goes/OCLOFactShe etPDFs/ABIQuickGuide_Band01.pdf

2020-07-10 15:20:25 UTC

http://cimss.ssec.wisc.edu/goes/OCLOFactShe etPDFs/ABIQuickGuide_Band03.pdf

Band 5 (1.61 μm)

2020-07-10 15:16:25 UTC

2020-07-10 15:21:25 UTC

MR3522: Remote Sensing of the Atmosphere and Ocean

GOES Advanced Baseline Imager Longwave Bands

Main Topics

- Utility of GOES longwave bands
- Brightness temperature
- Atmospheric water vapor detection

Idealized Case #2

Emitted Path Radiance Only

Here emission is the only source of photons and there is **no scattering**, so $\sigma_e = \sigma_a$.

 $J_{\lambda}(z) = \sigma_{a,\lambda}(z) B_{\lambda}(T(z))$

$$\varepsilon_{s,\lambda} = \sigma_{a,\lambda} \longrightarrow L(\delta_t; \mu, \phi) = \varepsilon_{s,\lambda} B_{\lambda}(T_s)$$

Kirchhoff's Law

Solution:

$$L(0;\mu,\phi) = L(\delta_t;\mu,\phi)e^{-\delta_t/\mu} + \int_0^{\delta_t} \frac{J(\delta';\mu,\phi)}{\sigma_e(\delta')}e^{-\delta'/\mu}\frac{d\delta'}{\mu}$$
$$\downarrow$$
$$L(0;\mu,\phi) = \varepsilon_{s,\lambda}B_{\lambda}(T_s)e^{-\delta_t/\mu} + \int_0^{\delta_t}B_{\lambda}(T(z))e^{-\delta'/\mu}\frac{d\delta'}{\mu}$$

Brightness temperature is defined as

the temperature a blackbody would need to emit the radiance measured by a satellite (L_t)

That is, if L_t was emitted by a blackbody, what would its temperature be?

- 1. The emitting body might not be a blackbody.
- 2. Radiation could be depleted along the path to the sensor.

$$L_t(\lambda,\theta,\varphi) = \varepsilon_s(\lambda,\theta)B(\lambda,T_s)\tau_d(\lambda) + \int_p^0 B(\lambda,T(p))\frac{d\tau_d(\lambda,p)}{dp}dp$$

For a cloud (an efficient absorber and emitter if ~100 meters or more thick) with an optically thin atmosphere (to the wavelength of interest) above it, the brightness temperature is approximately the cloud top temperature. Knowledge of the atmospheric sounding could help determine cloud top height.

Band 8 (6.19 µm)

6 0 9

2020-07-10 15:12:25 UTC

Band 9 (6.95 μm)

2020-07-10 15:31:25 UTC

2020-07-10 15:33:25 UTC

Band 11 (8.5 μm)

2020-07-10 15:20:25 UTC

Band 12 (9.61 µm): Ozone band

2020-07-10 15:15:25 UTC

2020-07-10 15:25:25 UTC

2020-07-10 15:13:25 UTC

2020-07-10 15:15:25 UTC

2020-07-10 15:12:25 UTC

MR3522: Remote Sensing of the Atmosphere and Ocean

Weighting Functions

Main Topics

- Interpreting weighting functions
- Relationship between optical depth and weighting functions

We can express variance in direct transmittance with height in terms of the weighting function.

 $\frac{d\tau_d(\lambda, p)}{dp} = Weighting Function \longrightarrow Peak of W is at p where the path radiance contributes most to L_t$

 $L_t(\lambda,\theta,\varphi) = \varepsilon_s(\lambda,\theta)B(\lambda,T_s)\tau_d(\lambda) + \int_p^0 B(\lambda,T(p))\frac{d\tau_d(\lambda,p)}{dp}dp$

Moist Environment

CONUS Radiosonde Locations

KBHM - Shelby Cnty Airport,AL 33:33:56N 86:44:42W 178m

https://cimss.ssec.wisc.edu/goes/wf/

Dry Environment

CONUS Radiosonde Locations

KVEF - Las Vegas, NV 36:02:50N 115:11:05W 693m

https://cimss.ssec.wisc.edu/goes/wf/

MR3522: Remote Sensing of the Atmosphere and Ocean

Joint Polar Satellite System (JPSS)

Main Topics

NOAA-20 and Suomi-NPP

Orbital parameters and field of view
Bands/channels used

Module 2.5

Image: NASA

Satellites in JPSS

- Suomi National Polar-orbiting Partnership (NPP)
- NOAA-20
- Three other satellites with future planned launch dates

Orbit: Sun-synchronous, daytime ascending, equator crossing time of 1:30PM

- NOAA-20 is about 50 minutes behind of Suomi-NPP so crosses a little to the west.

JPSS Composite RGB Image: North Pole View

Cross-track Infrared Sounder (CrIS)

- High spectral resolution sounder with over 3,000 spectral channels
- Estimates of atmospheric temperature and humidity profiles
- 14 km nadir data point spacing; 1 km vertical spacing
- Cannot see through clouds

Advanced Technology Microwave Sounder (ATMS)

- 22 channels from 23.8 GHz to 183.3 GHz
- 16–75 km data point spacing
- Can see through clouds because microwave is not scattered as much

https://www.star.nesdis.noaa.gov/jpss

Clouds and the Earth's Radiant Energy System (CERES) FM6 broadband radiometer

- Radiative fluxes, some cloud properties in "high", "middle" and "low" layers
- 20 km spacing of data points at nadir

nasa.gov/image-feature/ceres-fm6/

https://ceres.larc.nasa.gov/data/

Ozone Mapping and Profiler Suite (OMPS)

- Three spectrometers for measuring column-integrated ozone and ozone profiles
- 50 km data point spacing for mapper; 250 km for profiler

https://www.star.nesdis.noaa.gov/jpss

Visible Infrared Imaging Radiometer Suite (VIIRS)

- Most similar to ABI on GOES with multiple sensors in the visible and infrared
- Up to 350 meter data point spacing
- Useful for weather monitoring, ocean color, SST estimates, aerosol detection

VIIRS Sensor Bands

		Band No.	Wave- length	Horiz Sample Interval (km Downtrack x Crosstrack)		Driving EDRs	Radi- ance Range	Ltyp or Ttyp
VIS/NIR FPA	Silicon PIN Diodes	M1	0.412	0.742 x 0.259	1.60 x 1.58	Ocean Color Aerosols	Low High	44.9 155
		M2	0.445	0.742 x 0.259	1.60 x 1.58	Ocean Color Aerosols	Low High	40 146
		M3	0.488	0.742 x 0.259	1.60 x 1.58	Ocean Color Aerosols	Low High	32 123
		M4	0.555	0.742 x 0.259	1.60 x 1.58	Ocean Color Aerosols	Low High	21 90
		11	0.640	0.371 x 0.387	0.80 x 0.789	Imagery	Single	22
		M5	0.672	0.742 x 0.259	1.60 x 1.58	Ocean Color Aerosols	Low High	10 68
		M6	0.746	0.742 x 0.776	1.60 x 1.58	Atmospheric Corr'n	Single	9.6
		12	0.865	0.371 x 0.387	0.80 x 0.789	NDVI	Single	25
		M7	0.865	0.742 x 0.259	1.60 x 1.58	Ocean Color	Low	6.4
						Aerosols	High	33.4
CCD DN		DNB	0.7	0.742 x 0.742	0.742 x 0.742	Imagery	Var.	6.70E-05
S/MWIR	PV HgCdTe (HCT)	M8	1.24	0.742 x 0.776	1.60 x 1.58	Cloud Particle Size	Single	5.4
		M9	1.378	0.742 x 0.776	1.60 x 1.58	Cirrus/Cloud Cover	Single	6
		13	1.61	0.371 x 0.387	0.80 x 0.789	Binary Snow Map	Single	7.3
		M10	1.61	0.742 x 0.776	1.60 x 1.58	Snow Fraction	Single	7.3
		M11	2.25	0.742 x 0.776	1.60 x 1.58	Clouds	Single	0.12
		14	3.74	0.371 x 0.387	0.80 x 0.789	Imagery Clouds	Single	270 K
		M12	3.70	0.742 x 0.776	1.60 x 1.58	SST	Single	270 K
		M13	4.05	0.742 x 0.259	1.60 x 1.58	SST	Low	300 K
						Fires	High	380 K
LWIR	F	M14	8.55	0.742 x 0.776	1.60 x 1.58	Cloud Top Properties	Single	270 K
	PV HC	M15	10.763	0.742 x 0.776	1.60 x 1.58	SST	Single	300 K
		15	11.450	0.371 x 0.387	0.80 x 0.789	Cloud Imagery	Single	210 K
		M16	12.013	0.742 x 0.776	1.60 x 1.58	SST	Single	300 K

High resolution IR imagery; 750 m compared to 2 km with GOES. 11.45 micron imagery has 370 x 387 meter sampling at nadir Many more band in **blue** light part of visible spectrum; useful for aerosol detection and ocean color

Band	Midpoint (µm)	Bandwidth (μm)	Range (µm)	Region	Spatial Resolution at nadir	
M1	0.412	0.02	0.402 - 0.422		750 m	
M2	0.445	0.018	0.436 - 0.454	Visible (reflective)		
M3	0.488		0.478 - 0.488			
M4	0.555	0.02	0.545 - 0.565			
M5 (B)	0.672	0.02	0.662 - 0.682			
M6	0.746	0.015	0.739 - 0.754	NeerID		
M7 (G)	0.865	0.039	0.846 - 0.885	NearIK		
M8	1.240	0.020	1.23 - 1.25			
M9	1.378	0.015	1.371 - 1.386	Shortwave		
M10 (R)	1.61	0.06	1.58 - 1.64	IN		
M11	2.25	0.05	2.23 - 2.28			
M12	3.7	0.18	3.61 - 3.79	Medium-		
M13	4.05	0.155	3.97 - 4.13	wave IR		
M14	8.55	0.3	8.4 - 8.7			
M15 ¹	10.763	1.0	10.26 - 11.26	Longwave IR		
M16	12.013	0.95	11.54 - 12.49			
DNB	0.7	0.4	0.5 - 0.9	Visible (reflective)	750 m (across full scan)	
I1 (B)²	0.64	0.08	0.6 - 0.68	Visible (reflective)	375 m	
I2 (G)	0.865	0.039	0.85 - 0.88	Near IR		
13 (R) ²	1.61	0.06	1.58 - 1.64	Shortwave IR		
14	3.74	0.38	3.55 - 3.93	Medium- wave IR		
15	11.45	1.9	10.5 - 12.4	Longwave IR		

NOAA-20 VIIRS Global True Color Image, 2020-07-17

March 2020 average chlorophyll concentration from Suomi-NPP

https://oceancolor.gsfc.nasa.gov/

Suomi NPP VIIRS High Quality Aerosol Optical Thickness at 550 nm JPSS EPS 17 Jul 2020

N20 CrIS FSR BT, 11 µm (900 cm⁻¹), Mapped, Descending, 07/17/2020

NOAA-20 ATMS SDR Ch.1 23.8 GHz QV-POL 17 Jul 2020 Ascending

Created on Jul 18 01:27:17 2020 UTC

Suomi NPP OMPS V8 Total Ozone

4 Sep 2017

MR3522: Remote Sensing of the Atmosphere and Ocean

Surface Temperature Estimation using Infrared Radiances

Main Topics

- IR bands used to estimate SST
- Multi-channel SST estimates
- Land surface temperature
- Variable non-blackbody emittance by surface objects

Remember, even in an atmospheric window:

Brightness temperature is not actual temperature!

- 1) Small amounts of absorption could reduce radiation from surface.
- 2) Emitting surface may not be a blackbody.

$$T_B = \frac{\hbar c}{\lambda k \ln \frac{2\hbar c^2}{\lambda^5 L_t}}$$

We can compute brightness temperature from observed radiance.

GOAL: Correct brightness temperatures using radiances in multiple bands to actual temperature at surface by accounting for water vapor absorption.

Limitation: This only works in cloud-free areas!

From Schwartzchild's Equation:

$$L_{t}(\lambda,\theta,\phi) = \varepsilon_{s}(\lambda,\theta)B(\lambda,T_{s})\tau_{d}(\lambda) + \int_{0}^{0}B(\lambda,T(p))\frac{d\tau_{d}(\lambda,p)}{dp}dp$$

... and for surface radiance to dominate we need a wavelength in a "window" so $\tau_d(\lambda)$ is large and $d\tau_d(\lambda,p)/dp$ is small above the surface

None of these are in perfect windows so there will always be some contribution from the path term due primarily to absorption/emission by water vapor

Therefore variations in the AVHRR Ch4 and Ch5 radiance/T_B difference, for example $T_B(11\mu m) - T_B(12\mu m)$ will be due to variations in column water vapor amount

Is this difference > or < 0?

AVHRR (NOAA-19) channels for SST are similar to those used by VIIRS (NOAA-20; M12, M13, M15, M16), except VIIRS has two SWIR channels. None of these are in perfect windows so there will always be some contribution from the path term due primarily to absorption/emission by water vapor

GOES Channels used for SST algorithm

Does the addition of atmospheric water vapor increase or decrease T_B?

Let's look at a simple case - addition of a homogeneous layer

$$\mathsf{L}_{t}(\lambda,\theta,\phi) = \varepsilon_{s}(\lambda,\theta)\mathsf{B}(\lambda,\mathsf{T}_{s})\tau_{d}(\lambda) + \int^{0}_{0}\mathsf{B}(\lambda,\mathsf{T}(p))\frac{\mathsf{d}\tau_{d}(\lambda,p)}{\mathsf{d}p}\mathsf{d}p$$

Becomes, $L_{t}(\lambda, \theta, \phi) = B(\lambda, T_{s})\tau_{d}(\lambda) + B(\lambda, T_{s})d\tau_{d}(\lambda)$

or,
$$L_{1}(\lambda, \theta, \phi) = B(\lambda, T_{1})0.9 + B(\lambda, T_{2})0.1$$

10% of the surface-emitted radiance

has been replaced with 10% of the "cooler" path-emitted radiance

 T_B decreases (determined by T_s , T_a , and τ_d)

How does the amount of water vapor affect the spectral variation of T_B ? [referring to AVHRR Channel (4) and Channel (5)]

 $\begin{aligned} T_{a}, \tau_{d}(4) = 0.95, \tau_{d}(5) = 0.9\\ \delta(4) = -\ln(0.95) = 0.051, \delta(5) = 0.105\\ & \text{(for nadir view)} \end{aligned} \\ T_{s}, \epsilon_{s} = 1\\ L_{t}(4, \theta, \phi) = B(\lambda, T_{s})0.95 + B(\lambda, T_{s})0.05\\ L_{t}(5, \theta, \phi) = B(\lambda, T_{s})0.9 + B(\lambda, T_{s})0.1\\ L_{t}(4, \theta, \phi) - L_{t}(5, \theta, \phi) = [B(\lambda, T_{s}) - B(\lambda, T_{s})]0.05\end{aligned}$

If we double the amount of water vapor, what changes?

```
δ doubles so... δ(4)=0.102, δ(5)=0.210
and, τ_d(4)=0.90, τ_d(5)=0.81
```

Since T_s and T_a don't change with wavelength, now...

$$L_{t}(4, \theta, \varphi) = B(\lambda, T_{s})0.90 + B(\lambda, T_{s})0.10$$
$$L_{t}(5, \theta, \varphi) = B(\lambda, T_{s})0.81 + B(\lambda, T_{s})0.19$$
$$L_{t}(4, \theta, \varphi) - L_{t}(5, \theta, \varphi) = [B(\lambda, T_{s}) - B(\lambda, T_{s})]0.09$$

VS

MCSST - MultiChannel Sea Surface Temperature

This technique assumes that the true surface temperature can be derived from a linear composite of the AVHRR Ch 4 and 5 brightness temperatures (accounting for water vapor variations)

 $T_s = A + B T_4 + C T_5$

A, B, and C can then be determined empirically:

Measure T_s (ship, buoy, etc.) in many places coincident with measurements of T₄ and T₅ (AVHRR)

Statistically determine A, B, and C that produce a best fit of

 $T_{s}(x) = A + B T_{4}(x) + C T_{5}(x)$

Or at night we can also use Ch 3 (3.7µm wavelength) (why?)

```
T_{s}(x) = D + E T_{3}(x) + F T_{4}(x) + G T_{5}(x)
```

The sea surface temperature lab exercise will give you an opportunity to examine MCSST calculations first hand

AVHRR Split Window formulation for NOAA-19

Note the night versions that add the 3.7 micron window

```
Day MCSST Split

T_s = a_0 + a_1^* band4 + a_2(band4 - band5) + a_3(band4 - band5)(sec(f) - 1)
```

```
Night MCSST Split

T_s = a_0 + a_1^* band4 + a_2(band4 - band5) + a_3(band4 - band5)(sec(f) - 1)

Night MCSST Dual

T_s = a_0 + a_1^* band4 + a_2(band3 - band4) + a_3(sec(f) - 1)

Night MCSST Triple

T_s = a_0 + a_1^* band4 + a_2(band3 - band5) + a_3(band3 - band5)(sec(f) - 1)
```

What part of the water column are we "sensing"?

How far can photons travel in water before they are absorbed?

We are sensing just the "skin" temperature of the ocean

The advantage of the statistical technique is that T_B is correlated to bulk temperature measurements and the coefficients in MCSST correct for the difference between bulk and skin temperature.

What about Land Surface Temperature (LST)?

Credit: Twitter (@realdonaldtrump) Previously classified imagery

Module 2.7

Landsat 8

- 2 instruments
 - Operational Land Imager (OLI)
 - 9 bands in VIS and near-IR
 - 30x30 meter spatial resolution (15x15 meter panchromatic)
 - Thermal Infrared Sensor (TIRS)
 - 2 bands in Earth IR
 - 100x100 meter spatial resolution

- Altitude: 705 km
- Inclination: 98.2°
- Period: 99 minutes
- Equatorial crossing (descending): 10:11am (Landsat7 at 10:00am)

Band	Wavelength	Useful for mapping
Band 1 - Blue	0.45 - 0.52	Bathymetric mapping, distinguishing soil from vegetation, and deciduous from coniferous vegetation
Band 2 - Green	0.52 - 0.60	Emphasizes peak vegetation, which is useful for assessing plant vigor
Band 3 - Red	0.63 - 0.69	Discriminates vegetation slopes
Band 4 - Near Infrared	0.77 - 0.90	Emphasizes biomass content and shorelines
Band 5 - Short-wave Infrared	1.55 - 1.75	Discriminates moisture content of soil and vegetation; penetrates thin clouds
Band 6 - Thermal Infrared	10.40 - 12.50	Thermal mapping and estimated soil moisture
Band 7 - Short-wave Infrared	2.09 - 2.35	Hydrothermally altered rocks associated with mineral deposits
Band 8 - Panchromatic (Landsat 7 only)	0.52 - 0.90	15 meter resolution, sharper image definition

Landsat 8 Bands (2013-present) also planned for Landsat-9 (launch in 2020)

Band	Wavelength	Useful for mapping
Band 1 – Coastal Aerosol	0.435 - 0.451	Coastal and aerosol studies
Band 2 – Blue	0.452 - 0.512	Bathymetric mapping, distinguishing soil from vegetation, and deciduous from coniferous vegetation
Band 3 - Green	0.533 - 0.590	Emphasizes peak vegetation, which is useful for assessing plant vigor
Band 4 - Red	0.636 - 0.673	Discriminates vegetation slopes
Band 5 - Near Infrared (NIR)	0.851 - 0.879	Emphasizes biomass content and shorelines
Band 6 - Short-wave Infrared (SWIR) 1	1.566 - 1.651	Discriminates moisture content of soil and vegetation; penetrates thin clouds
Band 7 - Short-wave Infrared (SWIR) 2	2.107 - 2.294	Improved moisture content of soil and vegetation and thin cloud penetration
Band 8 – Panchromatic (15m)	0.503 - 0.676	15 meter resolution, sharper image definition
Band 9 – Cirrus	1.363 - 1.384	Improved detection of cirrus cloud contamination
Band 10 – TIRS 1	10.60 - 11.19	100 meter resolution, thermal mapping and estimated soil moisture
Band 11 – TIRS 2	11.50 - 12.51	100 meter resolution, Improved thermal mapping and estimated soil moisture

Multispectral vs. Panchromatic Imagery

Multispectral imagery is derived from several discrete bands in the visible part of the EM spectrum. This is the type of true color imagery we have viewed so far.

Panchromatic imagery is derived from a single wide band in the visible part of the spectrum. This imagery usually has higher resolution than multispectral imagery because the large bandwidth (i.e. more total radiance detected by the sensor than in a narrow band) permits the use of smaller detectors.

Pan-sharpening is the process of combining multispectral and panchromatic data from a single instrument to create a single high resolution color image.

Landsat-8 Spectral Response Functions

Panchromatic band

WorldView-3

Design and specifications

Orbit	Altitude: 617 Type: SunSyn Period: 97 mir	km ic, 10:30 am descendir n.	ng Node			
Life	Spec Mission Life: 7.25 years Estimated Service Life: 10 to 12 years					
Spacecraft Size, Mass and Power	Size: 5.7 m (18.7 ft) tall x 2.5 m (8 ft) across 7.1 m (23 ft) across deployed solar arrays Mass: 2800 kg (6200 lbs) Power: 3.1 kW solar array, 100 Ahr battery					
Sensor Bands	Panchromatic 8 Multispectra Coastal: Blue: Green: Yellow:	:: 450 - 800 nm al: 400 - 450 nm 450 - 510 nm 510 - 580 nm 585 - 625 nm	Red: Red Edge: Near-IR1: Near-IR2:	630 - 690 nm 705 - 745 nm 770 - 895 nm 860 - 1040 nm	Swath Width	At nadir: 13.1 km
	8 SWIR Bands SWIR-1:	WIR Bands: IR-1: 1195 - 1225 nm SWIR-5:	2145 - 2185 nm	Attitude Determination and Control	Type: 3-axis Stabilized Actuators: Control Moment Gyros (CMGs) Sensors: Star trackers, precision IRU, GPS	
	SWIR-2: SWIR-3: SWIR-4:	1640 - 1680 nm 1640 - 1680 nm 1710 - 1750 nm	nm SWIR-6: nm SWIR-7: nm SWIR-8:	2185 - 2225 nm 2235 - 2285 nm 2295 - 2365 nm	Pointing Accuracy and Knowledge	Accuracy: <500 m at image start/stop Knowledge: Supports geolocation accuracy below
	In child parts			Retargeting Agility	Time to Slew 200 km: 12 sec	
	Desert Clouds	ands: uds: 405 - 420 nm Water-3: 459 - 509 nm NDVI-SWIR: 525 - 585 nm Cirrus: 635 - 685 nm Snow: 845 - 885 nm Aerosol-1:	930 - 965 nm 1220 - 1252 nm 1365 - 1405 nm 1620 - 1680 nm 2105 - 2265 nm	Onboard Storage	2199 Gb solid state with EDAC	
	Aerosol-1: Green: Aerosol-2: Water-1:			Communications	Image & Ancillary Data: 800 and 1200 Mbps X-band Housekeeping: 4, 16, 32, or 64 kbps real time, 524 kbps stored, X-band Command: 2 or 64 kbps S-band	
Sensor Resolution	Water-2: Panchromatic	897 - 927 nm Nadir: 0.31 m	Aerosol-2:	2105 - 2245 nm	Max Contiguous Area Collected in a Single Pass (30° off-nadir angle)	Mono: 66.5 km x 112 km (5 strips) Stereo: 26.6 km x 112 km (2 pairs)
(or GSD, Ground Sample Distance; off-nadir is geometric mean)	20" Uff-Nadir: 0.34 m Multispectral Nadir: 1.24 m 20" Off-Nadir: 1.38 m			Revisit Frequency (at 40°N Latitude)	1 m GSD: <1.0 day 4.5 days at 20° off-nadir or less	
	SWIR Nadir: 20° Off-N CAVIS Nadir:	3.70 m Nadir: 4.10 m 30.00 m			Geolocation Accuracy (CE90)	Predicted <3.5 m CE90 without ground control
Dynamic Range	11-bits per pixel Pap and MS: 14-bits per pixel SWIR		Capacity	680,000 km² per day		
synamic nunge	i i-ura per pi	Act and and mo, 14-bi	a her hwer ann			

Scattering (Reflectance of solar radiation) - Applies to Bands 1 through 9

$$L_{t}(\lambda,\theta,\phi) = L_{0}(\lambda,\theta,\phi)e^{-\delta(\lambda)/\mu} + \int_{0}^{\delta(\lambda)} \frac{\int_{4\pi} \gamma_{s}(\mathbf{r},\mathbf{r}',\lambda,\mathbf{X})L(\mathbf{r}',\lambda,\mathbf{X})d\Omega'}{q_{s}(\lambda,z)}e^{-\delta(\lambda,z)/\mu}\frac{d\delta}{\mu}$$

To derive land properties, we want the path radiance to have a small and removable contribution:

Emission (Radiation emitted directly by objects on Earth) - Applies to Bands 10 and 11

$$\mathsf{L}_{\mathsf{t}}(\lambda,\theta,\phi) = \varepsilon_{\mathsf{s}}\mathsf{B}(\lambda,\mathsf{T}_{\mathsf{s}}) e^{-\delta(\lambda)/\mu} + \int_{0}^{\delta(\lambda)} \mathsf{B}(\lambda,\mathsf{T}(\mathsf{z})) e^{-\delta(\lambda,\mathsf{z})/\mu} \frac{\mathsf{d}\delta}{\mu}$$

Landsat 8 viewing creation a manmade island out of a reef in the Spratly Islands

2015

2013

https://landsatlook.usgs.gov/

WorldView-3 March 2020

CSIS AMTI MAXAR

https://landsat.usgs.gov/spectral-characteristics-viewer

Detecting Vegetation

• One widely used index is the Normalized Difference Vegetation Index (NDVI). The combination of near-IR and red-visible data make this sensitive to chlorophyll.

$$NDVI = \frac{NIR - VIS}{NIR + VIS}$$

NIR = Near-IR reflectance

VIS = Visible (Usually red band) reflectance

This can also be computed using GOES data. Which bands would you use?

Some limitations: Often has lots of atmospheric induced or background noise; needs to be smoothed heavily.

Detecting Vegetation

• A complimentary alternative to NDVI is the EVI, or Enhanced Vegetation Index. It is more responsive to variations in canopy properties and leaf area index.

 $EVI = \frac{NIR - RED}{NIR + a * RED - b * BLUE + c}$

NIR = Near-IR reflectance

RED = red-band reflectance

BLUE = blue-band reflectance

a, b, and c are coefficients that depend on satellite

Some limitations: Signal to noise ratio in blue band is often low; also some old sensors did not have a blue band.

