
Module 1.1 
 
Slide 1: In this short module, we will cover the different types of EM radiation used for remote 
sensing and review part of the US radio frequency spectrum. 
 
Slide 2: EM radiation occurs in a wide range of wavelengths and corresponding frequencies. In 
the gray box, different types of radiation are labeled surrounding their corresponding 
wavelength, on the top axis, and frequency, on the bottom axis. In this course, we will discuss 
applications in the microwave, infrared, and visible part of the EM spectrum. First, we will 
discuss passive instruments in the visible and infrared, then passive microwave, then finally 
active sensing instruments such as radar. The US Radio Spectrum, outlined on the next slide, is 
bounded by the red lines. 
 
Slide 3: This busy figure shows different allocations within the radio and microwave part of the 
spectrum. Each color represents a different type of allocation, which you can see by zooming in 
on the figure in your set of slides for this video. The full text table can be found at the link 
below the figure. Broad swaths are reserved for radio and TV broadcasting, particularly at less 
than 800 MHz. At higher frequencies, allocations tend to be narrower. A few meteorological 
applications that we will cover in this class are circled in white: S-band, C-band, and X-band 
radar.  
 
Slide 4: The next figure is zoomed in on the second to bottom row on the previous slide. Again, 
C-band and X-band are circled, and black arrows point to other meteorological and earth 
exploration satellite allocations. Over the course of this class, we will discuss why certain bands 
are preferred for various applications. 
  



Module 1.2 
 
Slide 1: This module covers a few fundamentals of absorption and scattering in the atmosphere. 
We will discuss transmissivity of the atmosphere and atmospheric windows. 
 
Slide 2: Satellite instruments measure radiance, which is related to the intensity of radiation at 
a certain wavelength, at the top of the atmosphere. Sources of the radiation include emission 
by objects on Earth or scattering of radiation into a path directed toward the satellite. 
Processes that reduce the radiance observed by a satellite are absorption and scattering away 
from the path toward the satellite. 
 
Slide 3: The graphic describes an example of radiative transfer through a cloudy atmosphere. 
Red lines indicate sinks, and black lines denote sources. Radiation emitted by the ground, 
ocean, or the atmosphere below the cloud can either be absorbed by the cloud, or scattered by 
the cloud in any direction away from the satellite. However, the cloud emits a different amount 
of radiation at the same wavelength, and can scatter radiation initially not moving toward the 
satellite into the direction of the satellite. Suppose the radiance at the surface is L, and the 
radiance at the top of atmosphere is Ltop. The difference, dL, is a sum of four terms: Increases 
due to emission and scattering into the path to the satellite, and decreases due to absorption 
and scattering away from the path to the satellite.  
 
Slide 4: Atmospheric transmissivity is shown here as a function of wavelength. In this figure, the 
gray shaded area denotes how much radiation can pass through the entirety of an atmosphere 
with average temperature and moisture content for different wavelengths. Where the gray 
area reaches the top of the figure, the atmosphere is particularly transparent. This happens in 
particular in the visible part of the spectrum and in parts of the microwave. In the infrared, 
there are several bands—or ranges of wavelengths—in which the atmosphere is transparent. 
For example, the atmosphere is fairly transparent to 11-micron radiation. Such bands are 
known as atmospheric windows. Other bands are highly opaque. For example, at 7 microns, 
water vapor is a strong absorber. One would not want to use such a band for observing IR 
emissions from the surface, especially in locations where water vapor is often present. 
 
Slide 5: One can also see the role of various common molecules in the atmosphere on 
transmissivity of radiation. Here, we zoom in on infrared wavelengths between 1 and 15 
microns. Each row represents the transmissivity of an atmosphere containing an average 
amount of some molecule. For example, ozone, shown in the fourth row, is not transparent 
around 9.5 microns. This is because ozone absorbs radiation at this wavelength. The bottom 
row contains the summed effects of all atmospheric constituents. You can see that water vapor 
dominates the total transmittance at most wavelengths because the bottom two plots are quite 
similar. However, you can see some bands at which molecules other than water vapor are 
particularly important. For example, water vapor allows 9.5-micron radiation to pass, but ozone 
does not. This means that the atmospheric window spanning approximately 8–12 microns 
excludes the narrow ozone band. Carbon dioxide causes absorption above 13 microns and at 
some other wavelength ranges, such as around 4.2 microns. The effects of well-mixed 



molecules, like carbon dioxide, will be similar around the world. However, the effects of other 
molecules, like water vapor, are heavily dependent upon how much of that molecule is actually 
present. If no water vapor is present, then it will not affect the transmittance of the 
atmosphere. We will use this fact as a powerful tool to use passive radiation detection in 
multiple bands to tell us about water vapor concentration in the atmosphere. 
 
Slide 6: So far, we have talked about the effects of Earth’s atmosphere on absorption of 
radiation. However, as we saw before, scattering can act as both a source and a sink of 
radiation detected by a satellite. On the abscissa of this plot is wavelength of radiation, and on 
the ordinate is the radius of different scatterers in the atmosphere. We define a size 
parameter, which is 2-pi-r divided by lambda, or a ratio of the circumference of a hypothetical 
spherical scatterer to the wavelength of radiation. Rayleigh scattering occurs when the size 
parameter is small. Such scattering interactions tend to disperse radiation isotropically, or 
equally in all directions. As the size parameter approaches and exceeds 1, we enter the Mie 
scattering regime, which results in more complicated scattering interactions that are 
dominantly forward scattering. You can see the chi = 1 line in solid black running diagonally 
here. The slope of these lines means that shorter wavelengths are more efficiently scattered in 
the atmosphere. For example, visible light, which is centered around 0.6 microns is scattered by 
smoke, dust, and haze, but longer wavelengths, such as thermal IR radiation around 10 microns, 
or microwave are not scattered as much. Blue light is also more efficiently scattered than 
longer wavelength red light, which largely explains why the sky appears blue. For remote 
sensing purposes, this means that we are not particularly concerned with scattering in the 
infrared by the clear-air atmosphere. The primary source of radiation at the top of atmosphere 
for IR is emission by the surface or atmosphere, and the primary sink is absorption along the 
path to the satellite. Visible light, however, depends primarily on scattering to be detected. For 
example, for a satellite to detect a cloud, visible light must be reflected, or scattered, off the 
water or ice hydrometeors that make up the cloud. As you can see in this plot, cloud drops and 
rain drops are very efficient scatterers of visible light. Another example is that small aerosols 
are transparent to IR radiation, for example those resulting from biomass burning which are 
common over the West Pacific and areas like the South China Sea, reflect blue light more than 
red light. We will discuss scattering in more detail when we cover radar later in the quarter. 
 
 
 
 
 
 
 
 
 
  



Module 1.3 
 
Slide 1: In this video, we will review some basics of Planck’s Law, which we will refer back to 
several times throughout the quarter when discussing passive remote sensing. 
 
Slide 2: The Planck function describes the EM radiation emitted by a blackbody in thermal 
equilibrium at some temperature T. Remember from your radiative transfer class that a 
blackbody is a perfect absorber and a perfect emitter. Therefore, it obeys Kirchhoff’s Law, 
which states that emissivity of an object Is exactly equal to its absorptivity, neither of which can 
exceed 1. We will approximate that many objects in the atmosphere are blackbodies. The 
Planck function has a complicated looking mathematical structure that contains an inverse 
relationship with wavelength, but also an exponential in the denominator that includes both 
wavelength and temperature. The structure of the Planck function, plotted on a log-log plot is 
shown at right, with Planck radiance shown as a function of wavelength. The different curves 
show the Planck radiance for blackbodies with temperatures ranging from 3K to 10000K. The 
sun emits around 5800K, and Earth emits at around 300K. You can see that the Planck radiance 
maximizes at smaller wavelengths for higher temperatures. For example, a blackbody at 5800K 
has a maximum emission in the visible light part of the spectrum. The 300K blackbody emits the 
most at wavelengths a little above 10 microns but does not emit detectable visible light. The 
wavelength of maximum emission can be described by Wien’s Law, which simply states, that 
the wavelength of maximum emission is equal to a constant divided by the blackbody’s 
temperature. Plug in a few different values into Wien’s Law and see what you get. 
 
Slide 3: In this figure, the solar spectral irradiance at the top of Earth’s atmosphere is plotted by 
the top solid black line. Note that this figure is plotted on a linear scale instead of on a log-log 
plot. You can see how this compares to what would be expected from a 6000K blackbody, 
shown by the dashed line, which indicates a wavelength of maximum emission around 500 nm. 
This means that the sun emits the most in the blue visible light part of the EM spectrum. The 
Planck curve for the 6000K body and the TOA solar radiation goes to zero quickly as 
wavelengths go to 4 microns. For remote sensing applications, this means that we only try to 
detect reflected solar radiation at wavelengths less than about 4 microns.  
 
Slide 4: The actual solar irradiance at the Earth’s surface for an atmosphere with average water 
vapor content is depicted by the bottom of the shaded region. Molecular oxygen and water 
vapor absorb near-infrared solar radiation in various bands. Some of the bands are denoted by 
the red circles. If you look at the different curves around 1.4 microns, you’ll see that the top of 
atmosphere irradiance is about 400 W/m2/micron, but the surface irradiance is 0. You wouldn’t 
want to use a 1.4-micron wavelength on a satellite to gather information about reflection from 
the ground! 
 
Slide 5: Finally, scattering reduces how much radiation reaches the surface compared to the 
TOA. The difference between the top of the shaded region and the top black line indicates the 
sink—as a function of wavelength—caused by scattering. The blue and red lines respectively 
represent scattering of blue and red visible light. As discussed in the previous video, blue light is 



scattered more than red light by the atmosphere. Near IR radiation is not scattered comparably 
little as seen by the small difference between lines at longer wavelengths. 
 
Slide 6: We can also look at normalized Planck curves describing the downwelling solar 
irradiance at the surface and upwelling terrestrial irradiance at the TOA on the same plot. On 
the top row, the red line represents a representation of downwelling surface radiation from the 
sun, approximated as a 5525K blackbody. The purple, blue, and black lines represent irradiance 
corresponding with Planck emission curves for Earth at 210K, 260K, and 310K. They represent 
the TOA irradiance for a perfectly transparent atmosphere. Note that the displayed curves for 
irradiance are normalized. Following Planck’s Law, blackbody radiance from the warmer body is 
greater at all wavelengths. The shaded red and blue regions indicate the actual irradiance as a 
function of wavelength. As shown on the previous slides, the solar irradiance is reduced by 
scattering and absorption in certain bands. The bottom panels plot total extinction of radiation, 
or the combined loss due to scattering and absorption, of the atmosphere, broken down into 
contributions by various molecules. This is just 1 minus direct transmittance of the atmosphere. 
Water vapor absorption bands are clearly seen in the solar part of the spectrum. The blue 
shaded region represents the IR atmospheric window around 8–12 microns, where water vapor 
is not a strong absorber or emitter. The contributions of other molecules can also be seen and 
are important to consider for various applications that we will soon discuss. 
 
  



Module 1.4 
 
Slide 1: In this video, we will review some of the basic mathematics behind extinction, which 
means absorption or scattering, of radiation in the atmosphere. We will see various forms of 
Schwarzchild’s equation, which describes how radiance changes through a layer of the 
atmosphere. We will also cover the concepts of direct transmissivity and optical depth. 
 
Slide 2: Let’s return to our idealized atmosphere from a couple of modules prior. The radiance 
observed at the satellite is whatever comes from the surface plus the sources along the path to 
the satellite, caused by emission and scattering, minus the sinks, caused by absorption and 
scattering. 
 
Slide 3: Suppose you are interested in the change in radiance, or dL, and any point that we will 
call X, which in this case we have put in the cloud. The change in radiance is a function of 
location and the direction of the path to the satellite, r. A, B, C, and D simply represent sources 
and sinks of radiation. In its most simplistic form, this is Schwarzchild’s equation; however, A, B, 
C, and D aren’t particularly informative. We will expand on this a little bit using the second 
equation shown here. Now dL is displayed as only two terms, the first of which is the total sink, 
while the second is the total source.  
 
Slide 4: L-sub-lambda here represents the initial radiance at point X in direction r. Sigma-e 
represents the volume extinction coefficient at the point, which is the sum of the absorption 
and scattering coefficients. Each of these cofficients has units of inverse length. We can also 
define a single-scattering albedo, which is the ratio of the volume scattering coefficient to the 
volume extinction coefficient. It describes the probability of an interaction between a photon 
and a potential scatterer as being a scattering interaction instead of an absorption. The single-
scattering albedo is low for wavelengths that are not scattered in the medium through which 
they propagate—for example microwaves through clear, dry air. 
 
Slide 5: J represents the sources of radiation at that point toward the satellite. It consists of a 
source from thermal emissions and a source from scattering in a path toward the satellite.  
 
Slide 6: The thermal emissions are simply described as sigma-a multiplied by the Planck 
radiance at point X, which is defined by the temperature at X. Note also that Kirchhoff’s Law 
states that an object in thermodynamic equilibrium is an equally good emitter and absorber at 
the same wavelength. The coefficient related to emission will be denoted as epsilon. If it were 
1, the body is a blackbody at the wavelength specified. Perfect blackbodies do not exist, but 
planets and stars can often be approximated as blackbodies, at least for the purposes of 
describing them in class. Note that objects can have epsilon that varies as a function of 
wavelength. If an object is a perfect emitter at some wavelength, it will also absorb all radiation 
incident upon it at the same wavelength. Here, I have written that the volume absorption 
coefficient is equal in magnitude to the emissivity. What is strictly true is that absorptance, 
which is unitless unlike the volume absorption coefficient, is equal to emissivity. For the 
purposes of this class, we will simply assume that sigma-a is defined over a unit path length and 



that its magnitude equals the absorptance coefficient, which like emissivity, cannot exceed 1. 
We will subsequently use sigma-a and epsilon interchangeably depending on whether we want 
to describe emission or absorption.  
 
Slide 7: The source associated with scattering looks a bit more complicated. It is a function of 
the radiance at point X moving in any direction r’. The direction r, remember, is the path to the 
satellite. Gamma is just a scattering phase function that incorporates the probability of 
radiation traveling in direction r’ getting scattered into direction r. Then we integrate over 4-pi 
steradians, the solid angle subtended by a sphere surrounding point X, through all directions r’, 
which is collectively denoted as upper-case omega’. To summarize the past few slides, each of 
the two terms seen in the equation on the left have two terms within them. We can further 
expand on this form of Schwarzchild’s equation and will do so in the next module for various 
idealized radiative transfer scenarios. 
 
Slide 8: Before moving on, we should define a couple of very important concepts. The first is 
optical depth, which is also called optical thickness. I may use the two terms interchangeably 
throughout the course. I cannot stress one point enough: Optical depth is not actually a 
physical depth. It is a unitless variable that s how much absorption and scattering of radiation at 
some specified wavelength occurs along a path. The mathematical definition is the integral of 
the volume extinction coefficient integrated over some path. We will use small delta to denote 
optical thickness. What is displayed here is the vertical path optical depth, which describes the 
optical depth along a perfectly vertical path. If we integrate this from 0 to the top of the 
atmosphere, we compute the optical depth of the atmosphere. Another important concept is 
the direct transmittance. It exponentially decays as vertical path optical depth increases, and it 
is also dependent upon the angle off the vertical that describes the direction of the path. We 
will see some drawings of this next to help you visualize this. That angle is described as theta, 
and we will denote mu as the cosine of theta. If theta is 0, meaning a vertical path, then the 
direct transmittance is just e to the negative vertical path optical depth, and you are left with 
the direct transmittance (or transmissivity) of the atmosphere, which is what we discussed in 
previous modules. Finally, note the general expression of path optical depth, where the path is 
denoted by s instead of the vertical coordinate z. Delta as a function of s along a path from s1 to 
s2 is just delta as a function of z through the layer transited by the path from s1 to s2 divided by 
mu. With all those words done now, let’s look at some pictures. In the next module, we will 
cover more related to optical depth along different paths, so you may find coming back to this 
slide useful for understanding what we cover then. 
 
Slide 9: Let’s return to our idealized atmosphere with a cloud. The ground has radiance L. For a 
path straight up, the angle theta is zero. Whatever the value of sigma-e at various altitudes, its 
integral will always increase as radiation moves upward from the ground, since sigma-e must be 
positive. 
 
Slide 10: The optical depth along this path is just the vertical path optical depth, or the integral 
of sigma-e from the surface to the top of the atmosphere. Here, we are denoted the ground as 



z’=0 and the top of atmosphere as z’=z. Then we integrate over z’, which is our vertical 
coordinate. 
 
Slide 11: We can also compute the optical depth of a layer that isn’t the entire depth of the 
atmosphere. For example, suppose we want to know the optical depth of the cloud layer. Then 
we simply integrate from the bottom of the cloud to the top of the cloud.  
 
Slide 12: The path that radiation travels along, however, doesn’t have to be vertical. Suppose 
we want to know the optical depth along a path from the same point on the ground to the 
satellite in this drawing. In this case, we have to consider the angle theta. The path along the 
solid line to the satellite is longer than the dashed line that points straight upward, so the 
optical depth (assuming that sigma-e is horizontally homogenous) will be larger along the solid 
line. In this case, we can say that the ground is point s1 and the satellite is point s2. The direct 
transmittance along this longer path will also be lower than the transmissivity along a vertical 
path. Of course, you can imagine, that the optical depth might be very different dependent 
upon whether a cloud is present. It is also very sensitive to the concentration of atmospheric 
constituents, such as water vapor. The various absorptivity of water vapor and other molecules 
as various wavelengths explains why some wavelength ranges are atmospheric windows on 
Earth and others are not. We will continue to build upon these concepts over the next few 
modules and begin to apply them as we start discussing particular remote sensing instruments. 
 
 
 
 
 
  



Module 1.5 
 
Slide 1: In this lecture, we will describe a few idealized cases of Schwarzchild’s equation, 
including the case described by Beer’s Law. Recall the general from of Schwarzchild’s equation, 
shown here at the bottom. We will use this as a starting point for discussion. 
 
Slide 2: Consider again an atmosphere with optical depth that varies with height. From the 
point of view of a satellite, the optical depth at the top of the atmosphere is 0, and the optical 
depth of atmosphere in this example is delta-sub-t. We will use coordinates of optical depth as 
a proxy for height coordinates. Again, we know that optical depth is larger through the same 
atmosphere along a slant path than along a vertical path, and the two are related to each other 
though the cosine of the angle that the path to a satellite makes with the vertical path from the 
surface. 
 
Slide 3: Recall the definition of optical thickness and differentiate both sides of that equation, 
and you get what you see here. Doing some simple algebra will yield the following equation 
that is just the Schwarzchild’s equation with the possibility of a slant path included. Wherever 
you see phi, it just represents the azimuthal angle for the path to the satellite. For considering 
idealized cases though, we will just consider a two-dimensional space like that shown here. 
 
Slide 4: Next, suppose you want to describe dL over several discrete small layers from the 
surface to the top of atmosphere. One such box is shown by the black box at height z. Radiation 
is emitted, absorbed, and scattered by molecules in the box. The radiance at the top of the 
atmosphere (at delta = 0) is equal to the radiance at the surface, reduced by the direct 
transmissivity of the entire atmosphere along the path length, plus the integral of the sources 
in these several discrete boxes along the path. However, sources of radiation are then subject 
to extinction further up the path, so only the direct transmittance of the layer above the box is 
considered in the integral. In this example, we’re simply treating the integral by conceptually 
breaking up the atmosphere into many discrete layers. 
 
Slide 5: Let’s begin to consider some idealized cases. First, let’s assume that no sources of 
radiation exist along the path. That means that J goes to zero. We can do some simple algebra 
to show that radiance at the end of the path, at s1, is equal to radiance at the beginning of the 
path, at s, reduced by the direct transmittance. This looks like the first term in the equation 
from the previous slide. This relationship is known as the Beer-Lambert-Bouguer Law, also 
known as Beer’s Law.  
 
Slide 6: If we consider an idealized situation where there is no scattering into the beam and the 
Planck radiance at the wavelength of interest is approximately zero, the radiance at the top of 
the atmosphere is simply radiance at the bottom of the atmosphere, reduced by the direct 
transmittance, here also accounting for the angle even though the figure illustrates a vertical 
path length. If we consider the vertical path, an optical depth of 1 corresponds to a direct 
transmissivity of about 37%. High optical depths correspond to very low transmissivity. An 
optical depth of about 4.5 corresponds to direct transmissivity of 1%. Such optical depths are 



quite common at wavelengths that are efficiently absorbed or scattered. For example, clouds 
are highly opaque to visible light, and they commonly have optical thickness of greater than 1. 
 
Slide 7: Let’s look at a few examples. In this example, we are considering an atmosphere with 
three different profiles of aerosols or some other scattering/absorbing objects. Suppose 
radiance out of an ocean is 1000 W m-2 sr-1. There are no sources of radiation along the 
slantwise path indicated in each panel. The first atmosphere, on the left, is a well-mixed 
homogenous atmosphere. The second atmosphere, at middle, has more aerosols in the lower 
troposphere than aloft. The third atmosphere is one that contains a layer of aerosols. It is 
possible for all three atmospheres to have the same direct transmittance. While the optical 
depth of the layer from z to z+dz varies across the three examples, and is largest in the third 
atmosphere, the optical depth of a low-tropospheric layer is largest in the second example, and 
largest in the upper troposphere in the first example. Thus, the optical depths of the entire 
atmospheres could feasibly all be the same. Let’s suppose they are, and that the radiance at the 
top of each atmosphere is 400 W m-2 sr-1. What is the optical depth of the atmosphere? Pause 
here, taking a little time before advancing to see if you can figure out how to calculate the 
optical depth.   
 
Slide 8: You should get something close to 0.79. Divide 400 by 1000 to get 0.4. Take the 
negative natural log of 0.4 and multiply by the cosine of 30 degrees.  
 
Slide 9: Consider the next simple case. Here we will allow emission, but not scattering, to be a 
source of radiation along the path. This is primarily the case for infrared emissions detected by 
satellites. Now J is not zero. Instead it is proportional to the Planck radiance multiplied by the 
emissivity of the surface. The Planck radiance is determined by the temperature of the surface. 
We can take the general form of the Schwarzchild’s equation and substitute it for values related 
to the Planck radiance. The surface radiance can be replaced as shown in red, and the radiance 
along the path, the source, is substituted in for J over sigma-e in the integral.  
 
Slide 10: Again, the solution we end up with says that radiance at the top of the atmosphere is 
equal to radiance at the surface reduced by transmittance, and added to that, all the sources 
along the path to the satellite, themselves reduced by the transmissivity of whatever layer 
above them through which they must pass. 
 
Slide 11: What does this mean for remote sensing? Recall our discussion of atmospheric 
windows. Because of water vapor, carbon dioxide, ozone, and some other molecules, the 
atmosphere is opaque to radiation in certain wavelengths and transparent to it in others. Ask 
yourself, in atmospheric windows, such as those near 10 microns, is the blue Term 1 or the red 
Term 2 larger? What about in bands such as those centered on the water vapor absorption 
band near 7 microns? Term 1 is much larger in atmospheric windows because the direct 
transmissivity of the atmosphere is high, and most of the radiation emitted by the surface 
reaches the top of the atmosphere.  
 



Slide 12: Finally, we will consider the case in which scattering Is the only source. A realistic 
example of this is solar radiation, which is not emitted. For example, visible satellite imagery 
sees radiation scattered off of objects on the surface or in the atmosphere. For simplicity, we 
will assume that single-scattering dominates. In other words, we’ll assume that once radiation 
has been scattered one time, it will not be scattered again. This is not really a realistic 
assumption, but it is effective for explaining the basic concept of how scattering is incorporated 
into Schwarzchild’s equation. In this case, Jth is zero, and we’ll also assume that no radiation is 
emitted by the surface. Suppose radiance from the sun is described by L, with angles theta_0 
and phi_0 related to the angle of incoming radiation. After radiation is scattered, it exits the 
atmosphere at some new angle theta and phi. Thus, at a given point in the atmosphere, the 
radiation at an arbitrary point X is the incoming solar radiation reduced by the transmissivity of 
the layer, which is controlled in this case by how much scattering occurs above point X. The 
radiance at a point along a path is then an integral of a complicated looking phase function, 
gamma, multiplied by the incoming radiance reduced by transmissivity of the layer above. The 
phase function can be expressed as a function of scattering angle, psi-sub-s, and again we 
integrate over the 4-pi steradians subtended by a sphere. In this class, we will not try to 
compute or use any of these phase functions, but I do want to at least skim the surface on how 
they can be expressed as a source or sink of radiation to a satellite. 
 
Slide 13: We can start with our general form of the Schwarzchild’s equation and plug our new 
expression for the source term in. Note here that we have switched the sign convention for the 
vertical coordinate, so that L-sub-t denotes radiation at the top of the atmosphere outbound, 
and L-0 denotes inbound radiation that is scattered off the surface. If we assume that the 
atmosphere is homogenous, we end up with the expressed at the bottom. It says that top of 
atmosphere radiance is equal to radiance scattered off the surface toward the satellite reduced 
by the direct transmittance of the entire atmosphere along a slant path plus any additional 
radiation scattered by the atmosphere into the direction of the satellite. Note that we have 
replaced sigma-s over sigma-e with the single scattering albedo, and that two exponential 
decay terms appear in purple: One for radiation on the way down, and another for radiation on 
the way up. Although we won’t do so here, we can ultimately combine the various idealized 
cases to include absorption and scattering. Solar radiation is primarily scattered to satellites, 
while infrared radiation detected by satellites is primarily emitted. However, where there is 
overlap with solar and terrestrial emissions—around 4 microns—both must be considered. 
Additionally, in the microwave part of the EM spectrum, we will have to consider both 
absorption and scattering. 
  



Module 1.6: 
 
Slide 1: In this module, we will discuss the orbits of satellites in medium to high-Earth orbit, 
including geostationary satellites, which are very important for global meteorological 
observations and a focus of the second Lecture Series that will follow. 
 
Slide 2: The orbit of a satellite is important primarily because it controls the area that we can 
see from the satellite and also puts a physical constraint on the spatial resolution that we can 
achieve. It also impacts the projection of a satellite image. In the python code for the first lab, 
you can actually see where the map projection for the data must be specified. Particular 
attributes of an orbit determine how much area a single satellite can cover, how high a latitude 
it can take observations, or what the return time is for a satellite at a given point on Earth. 
 
Slide 3: An orbit is defined by a few characteristics. The first is height. We will discuss orbits in 
three categories of heights: Geosynchronous orbit, near 35,786 km above surface; which is 
where satellite platforms like GOES, Himawari, Meteosat, INSAT, or Fengyun operate. Mid-
Earth orbit is essentially anything below geosynchronous orbit and above about 2,000 km. 
Semi-synchronous orbits are examples of mid-Earth orbits. Low-earth orbits are less than 2,000 
km above the surface, and most that we will talk about in this class are under 1,000 km in 
altitude. The majority of satellite systems we will discuss in this class are in low-Earth orbit.  
 
Slide 4: The speed of an object in orbit is controlled by Earth’s gravity and the height of the 
orbit. Some typical values of geosynchronous and low-earth orbits are shown here alongside 
the corresponding velocity and how frequently the satellite completes one orbit. Based on 
Newton’s laws of motion, the gravitational force between a satellite and the planet is inversely 
proportional to the distance squared between their centers of mass. A geosynchronous orbit is 
completed once daily. Satellites in low-earth orbit are at lower altitude, move more than twice 
as fast, and complete a full orbit much more frequently. 
 
Slide 5: Eccentricity is the next important parameter used to describe an orbit. It describes the 
shape of the orbit. It is denoted here by epsilon. Eccentricity of zero describes a perfectly 
circular orbit, while higher eccentricities describe elliptical orbits with foci that are increasingly 
far apart, and one of which is always Earth. The orbits for most of the platforms we will discuss 
in this class have low eccentricity, meaning they are near-circular. 
 
Slide 6: A couple of additional terms come up when discussing elliptical orbits: apogee and 
perigee. Apogee refers to the point in an orbit that is farthest from the major focus, which is 
Earth for remote sensing satellites. Perigee is the point of closest approach to Earth. Other 
orbits have these parameters too. For example, Earth’s orbit around the sun is not perfectly 
circular. It reaches apogee (apihelion) in July and perigee (perihelion) in January. 
 
Slide 7: An orbit is also defined by its inclination. The inclination describes the angle off the 
equator made by the sub-satellite path of an orbit. Imagine if you drew a line in the ground 
pointing straight down from a satellite and drug it along the ground as the satellite moved. That 



would be the sub-satellite point. We call the viewing geometry of the satellite pointing straight 
down from the satellite nadir. An outline of one hypothetical satellite track is shown by the red 
line in this figure. The angle denoted by the black arc is the orbital inclination. In this example, it 
looks to be about 45 degrees. Geostationary orbits have inclination, as we will soon see, of 0 
degrees. An orbit directly over the poles would have an inclination of 90 degrees.  
 
Slide 8: A special type of low-earth orbit, sun-synchronous orbit, has an inclination of around 98 
degrees, which is denoted by the blue line. That means that the highest latitude over which it 
will pass is 82 degrees, although onboard instruments may be able to sample off-nadir at higher 
latitudes. Orbits with inclination larger than 90 degrees are in retrograde orbit, which means 
they appear to move from east to west on successive orbits. Prograde low-earth orbits are 
those with inclination less than 90°. 
 
Slide 9: As stated before, the orbits for most satellites we will discuss in this class are close to 
circular. However, there are several factors that make the orbit slightly elliptical or require 
occasional correction to maintain the desired orbit. The most obvious is that the distribution of 
mass on Earth is not spherical. The Earth’s geoid has numerous fluctuations in space—which 
also becomes important to consider when collecting measurements with an altimeter. Other 
bodies—particularly the sun and moon—also exert gravitational force on satellites. Especially 
for satellites in low-Earth orbit, drag and lift are dependent upon properties of the satellite 
platform itself and must be accounted for because they cause the orbital velocity to be a little 
different than that predicted by Newtonian mechanics. Other processes associated with solar 
radiation and Earth’s EM field can cause higher order minor alterations to orbit that can vary 
with time. Occasionally, corrections must be made to an orbit by using fuel to thrust a satellite 
platform in a direction that increases or decreases its forward velocity in order to maintain a 
stable, desired orbit for observations that are consistent and high-quality for many years. 
 
Slide 10: Next, we’ll look at geosynchronous orbits—and in particular, the special case of 
geostationary orbits—in more detail. 
 
Slide 11: A geosynchronous orbit is any orbit at the height of about 35,786 km above mean sea 
level. It can have any inclination, and a variety of combinations of inclinations and eccentricities 
can be used to create various orbital patterns. The main characteristic of geosynchronous orbits 
is that they return to the same zenith, or overhead, point every 24 hours.  
 
Slide 12: A geostationary orbit is a special case of geosynchronous orbit as denoted by the 
simple Euler diagram shown here. Its inclination is zero, meaning it is neither in prograde or 
retrograde. This means that a geostationary orbiter remains over the same sub-satellite point 
all the time. A geostationary satellite is therefore often defined by the longitude of its nadir 
viewing angle. In other words, it views the same scene continuously. This is extremely useful for 
making observations of Earth with high temporal resolution. The entire second lecture series is 
devoted to interpreting measurements from advanced imagers aboard the United States GOES 
and Japanese Himawari weather satellites. 
 



Slide 13: The velocity and height of a geostationary orbit can be determined analytically easily 
by using Newton’s laws of motion. Remember Newton’s second law, which states that the force 
needed to accelerate an object is proportional to its mass. Perhaps you recall from a university 
course in kinematics, that centripetal acceleration is velocity-squared of an object divided by its 
orbital radius, the latter which is the distance from the center of rotation—in this case Earth’s 
center of gravity. Note the expression for gravitational force between two bodies, which is 
proportional to the product of the masses of the two objects, and as stated earlier, inversely 
proportional to the orbital radius squared. If we equate the two to each other, then the mass of 
the satellite becomes inconsequential to its orbital velocity, although a large aerodynamically 
“sticky” satellite may have more drag and make its orbital velocity a little slower than that 
predicted by the Newtonian mechanics laid out here that neglect friction. We know that the 
orbital period is just the distance of the orbit, which is approximated here as the circumference 
of a circle, divided by the orbital velocity. Then do some algebra to solve for the orbital period, 
or given the period, solve for the radius. Try this and see if you can mathematically show what 
the height of geostationary orbit is. 
 
Slide 14: An example of the view from a geostationary satellite is shown in this image, taken 
from GOES-16. As you can see, the entire disk of the Earth is visible. If you were able to zoom in 
and look closely, you could see that the spatial resolution is higher at nadir than it is at the 
edges of the disk. An image like this can be collected currently every 15 minutes, with imagery 
over smaller sectors collected more frequently. 
 
Slide 15: As mentioned, one of the benefits of geostationary orbit is its large spatial coverage 
that is continuous. However, the spatial resolution is not very high. The highest resolution of 
any GOES data at nadir is 500 meters by 500 meters. For comparison, we will see later in the 
course some examples of LEO satellites that can achieve resolution on the order of a few 
centimeters. The distance also makes active sensing impractical.  Furthermore, as seen in the 
previous image, polar regions are not well observed, and the high latitudes that are observed 
are done so at coarse spatial resolution. Finally, geostationary satellites experience temporary 
outages during eclipses. 
 
Slide 16: We will finish this module by briefly discussing a couple of medium Earth orbits, the 
semi-synchronous orbit and the Molniya orbit. 
 
Slide 17: A semi-synchronous orbit is situated at about 20,200 km above mean sea level. The 
image shown here isn’t to scale; the Earth is way too large compared to the orbits, but it just 
illustrates that the semi-synchronous orbit is always inside a geosynchronous orbit with the 
same inclination. 
 
Slide 18: Satellites in semi-synchronous orbit move more quickly than those in geostationary 
orbit and complete one revolution every 12 hours. The primary use for semi-synchronous orbit 
discussed in this class is data derived from GPS satellite constellations. GPS operates at an 
inclination of about 55°, and GPS radio occultation is used to derive profiles of temperature and 
humidity in the atmosphere. 



Slide 19: Finally, the Molniya orbit is seldom used for Earth science purposes but is highly useful 
for viewing or transmitting to/from high latitudes. This orbit is highly eccentric and has an 
inclination of about 63.4 degrees. It has a period of about 12 hours and an apogee of nearly 
40,000 km. The orbital velocity varies with distance from Earth, increasing as the satellite 
passes closest to Earth. This means that the sub-satellite point of a platform in Molniya orbit is 
usually over high-latitudes. This is useful for purposes such as communications at high latitudes, 
where geostationary platforms are not very effective. An example of the sub-satellite track of a 
Molniya orbit is shown at bottom left. Because the orbital period is 12 hours, successive orbits 
view opposite sides of the globe. For Earth science purposes, a constellation of satellites in such 
an orbit could be useful for viewing weather or sea ice, for example, at high latitudes. In the 
next module, we will discuss low-Earth orbits in more detail. 
 
Slide 20: Lagrange points are special locations associated with two bodies each having 
gravitational pull on an object at those points. They are locations where the sum of the 
gravitational force toward both bodies (in this case the Sun and Earth) are balanced with the 
centripetal force. Shown in this diagram are the Lagrange points for the Earth-Sun system. They 
are denoted as L1 through L5. The white lines indicate the gravitational potential, and the blue 
line denotes the approximate Earth orbit around the sun. Red arrows denote gravitational 
potential toward a Lagrange point, and blue arrows denote potential falling away from a point. 
The Lagrange points L1, L2, and L3 are always on a line extending between and beyond the Sun 
and Earth. L4 and L5 are located at corners of an equilateral triangle with L4 and L5. You can 
almost think about the white lines as representing a topographic map. The “peaks” are 
relatively flat ridges at L4 and L5. In contrast, the Sun and Earth represents gravitational sinks. 
You can think of these as deep valleys or bowls. L3 is located at a low point between the ridges 
at L4 and L5. L1 is located at a col (or like a “gap” or “pass” if thinking in terms of navigation in 
the mountains) between the Sun and Earth—a high point in the gravitational potential between 
the two. L2 is located at another high point between Earth and space on the side opposite the 
Sun. 
 
Slide 21: The points L1, L2, and L3 are unstable locations. For example, imagine you had a little 
ball position at point L1, and you gave it just a little nudge in the direction of the blue arrows. 
The ball would pick up speed as it rolled away from the point L1. The same is true of L2 and L3. 
However, at points L4 and L5, the Coriolis force causes a body trying to move away from L4 or 
L5 to move back inward toward those points. Therefore, natural “trojan” satellites are often 
found at the L4 and L5 points of various planets. The L1 and L2 Lagrange points are of particular 
interest for remote sensing. For example, the James Webb telescope, which is used for 
astronomy and looks away from the Sun, is located at the Earth-Sun L2 point—on the side of 
Earth away from the Sun. The Deep Space Climate Observatory (DSCOVR) is situated at the 
Earth-Sun L1 point, and houses instrumentation used for space “weather” characterization, a 
topic that will be discussed in a module in the next lecture series. Typically, sensors are not 
situated at the L3 point because the Sun would be located between the sensor and Earth, 
making sending signals between the satellite and Earth impractical. And sensors are often not 
located at L4 or L5 because so many natural objects are present near these locations and would 
pose increased hazard to the instrument platform. 



Module 1.7: 
 
Slide 1: We continue our discussion of orbits in this module by examining low-Earth orbits. 
 
Slide 2: The map shown is a somewhat out-of-date representation of global surface weather 
stations on Earth. As expected, land masses are generally much more thoroughly observed than 
oceans, where calibrated observations are generally only collected on islands. Weather 
balloons are only regularly launched from land as well. Thus, the majority of Earth is not well 
represented by direct observations, which motivates the use of remote sensing to fill in 
observational gaps.  
 
Slide 3: An example of a low-Earth orbit is shown here. It usually has a high inclination that 
allows it to pass over high latitudes and low latitudes. Contrast this with the geostationary orbit 
that has zero inclination. Geostationary orbiters provide fantastic temporal resolution but lack 
in spatial resolution and latitudinal coverage. Constellations of low-Earth orbit satellites, on the 
other hand, can provide data with high spatial resolution and at high or low latitudes. 
 
Slide 4: A few terms are important to understand when discussing low-Earth orbits and data 
from satellites in such orbit. Since low-Earth orbit is roughly around the poles, a satellite moves 
from south-to-north in either the Western or Eastern Hemisphere, then from north-to-south in 
the other. The south-to-north track is called the “ascending orbit”, and the north-to-south track 
is called the “descending orbit”.  
 
Slide 5: A sun-synchronous orbit is one with a particular inclination, about 98°, that causes the 
solar angle, or the angle in the sky where the sun is located relative to a viewer on Earth, to be 
about the same each time the satellite passes the equator. Such an orbit is in retrograde, 
meaning that the longitude of the sub-satellite point drifts westward with successive orbits. The 
solar angle is determined by the equatorial crossing time, which roughly describes the local 
time—again based on the solar angle—that the satellite passes over. This is typically designed 
to be between 10AM and 2PM in one hemisphere. If a satellite orbit is designed to be moving 
northward over the equator at 10:30AM, then we would say that the orbit is “daytime 
ascending” with a 10:30AM equatorial crossing time. A sun-synchronous orbit allows for direct 
comparison of observations collected in different parts of Earth because the solar angle is 
approximately the same at each longitude observed. 
 
Slide 6: Not all low-Earth orbiting satellites are in sun-synchronous orbit, however. A high 
inclination orbit allows for nearly complete global coverage; however, some satellite platforms 
are designed with lower inclination if their missions do not involve observations of the poles. 
For example, the Tropical Rainfall Measurement Mission was at a 35° inclination and viewed 
only the subtropics and tropics. The replacement for TRMM, the Global Precipitation 
Measurement Core Observatory, has an inclination of 65° and can view higher latitudes than 
TRMM could. Since these orbits are not sun-synchronous, they can make observations of 
locations at various times of day. 
 



Slide 7: An example of a sun-synchronous orbit is that of the Aqua satellite. An example of four 
and a half successive orbits is shown at bottom. It has a daytime ascending orbit with an 
equatorial crossing time of 1:30PM. The exact track is repeated every 16 days. 
 
Slide 8: Satellite in low-Earth orbit have limited field of view compared to geostationary 
satellites. In this figure, the satellite might only see the atmosphere and surface within the two 
outer yellow dashed lines, with the center dashed line representing the sub-satellite point. This 
means that data is collected in swaths. 
 
Slide 9: An example of the swaths is shown in a day’s worth of data shown here. There are gaps 
in coverage at the poles because the satellite does not orbit directly over the pole. There are 
also gaps near the equator. The swath width for most instruments is usually too small for the 
field of view in successive orbits to overlap. 
 
Slide 10: Similar gaps at the equator can be seen in these examples of MODIS imagery from the 
Aqua and Terra satellites. Aqua has a daytime ascending orbit, while Terra has a nighttime 
ascending orbit. The two collectively overlap in coverage but view scenes at different angles. 
 
Slide 11: Satellite orbits can also be organized into constellations. The A-Train is an example of 
one such constellation of low-Earth orbiting satellites. As of 2020, the A-Train consists of four 
satellites that are able to provide observations of aerosol, clouds, radiative fluxes, and 
atmospheric thermodynamic profiles. They are all in sun-synchronous orbit at an altitude of 705 
km and pass over the same point on Earth within minutes of each other to provide 
comprehensive measurements of several different atmospheric variables coincident in space 
and time. The C-train consists of two active sensors: CloudSat and CALIPSO, which used to be 
members of the A-Train. They have been moved to a lower orbit in preparation for eventual re-
entry into Earth’s atmosphere at the end of the lives of each. The C-train orbits at a lower 
altitude and therefore moves at slightly faster velocity. We will see some data from these two 
satellites near the end of this course. 
 
To start out the course, we will discuss geostationary satellite data in the next series of 
modules. 


