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Skillful empirical subseasonal prediction of landfalling
atmospheric river activity using the Madden—Julian oscillation

and quasi-biennial oscillation
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1

Upon landfall, atmospheric rivers (ARs)—plumes of intense water vapor transport—often trigger weather and hydrologic extremes.
Presently, no guidance is available to alert decision makers to anomalous AR activity within the subseasonal time scale

(~2-5 weeks). Here, we construct and evaluate an empirical prediction scheme for anomalous AR activity based solely on the initial
state of two prominent modes of tropical variability: the Madden-Julian oscillation (MJO) and the quasi-biennial oscillation (QBO).
The MJO—the dominant mode of intraseasonal variability in the tropical troposphere—modulates landfalling AR activity along the
west coast of North America by exciting large-scale circulation anomalies over the North Pacific. In light of emerging science
regarding the modulation of the MJO by the QBO—the dominant mode of interannual variability in the tropical stratosphere—we
demonstrate that the MJO-AR relationship is further influenced by the QBO. Evaluating the prediction scheme over 36 boreal
winter seasons, we find skillful subseasonal “forecasts of opportunity” when knowledge of the MJO and the QBO can be leveraged
to predict periods of increased or decreased AR activity. Certain MJO and QBO phase combinations provide empirical subseasonal
predictive skill for anomalous AR activity that exceeds that of a state-of-the-art numerical weather prediction model. Given the
wide-ranging impacts associated with landfalling ARs, even modest gains in the subseasonal prediction of anomalous AR activity
may support decision making and benefit numerous sectors of society.
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INTRODUCTION

A comparative gap in forecast guidance exists between medium-
range weather forecasts (up to 2 weeks) and seasonal outlooks
(3+ months).'™ Thus, opportunities abound to add far-reaching
value to society with skillful predictions of extreme, and frequently
hazardous, weather events that occur within this so-called
subseasonal-to-seasonal gap.® Sectors such as agriculture, energy
production, resource management, and insurance stand to benefit
from advance notice of weather extremes in order to prepare for
such events.

Here, we focus on the subseasonal time scale that spans
forecast lead times of ~2-5 weeks. Skillful predictions of
extratropical phenomena within this time scale generally rely on
the prediction of large-scale circulation anomalies,* which are
often linked to tropical disturbances that excite quasi-stationary
Rossby waves that propagate into the extratropics.”” Indeed,
predictive power in the subseasonal time scale is largely
associated with the evolution of far-reaching teleconnections
produced by tropical phenomena such as the Madden-Julian
oscillation (MJO).2° The MJO is the dominant mode of intrasea-
sonal variability in the tropical troposphere and is often
characterized by a large-scale pattern of coupled anomalous
atmospheric circulation and deep convection that propagates
eastward along the equator with a period of ~30-90 days."
Additionally, the MJO is known to be an important source of
subseasonal predictability®'"'? and can support predictions of
various phenomena outside of the tropics. For example, a recently

developed empirical model for predicting North American 2-m
temperatures based on the MJO, the El Nifio-Southern Oscillation
(ENSO) cycle, and linear trends produces skill and provides
valuable guidance beyond a basic climatological forecast.”
Moreover, the teleconnection patterns associated with the ENSO
cycle and the MJO provide a scientific basis for subseasonal
prediction with operational forecast models.'®

Emerging science is illuminating the influence that the state of
the tropical stratosphere has on the MJO and its teleconnections.
Here, the state of the stratosphere is represented by the phase of
the quasi-biennial oscillation (QBO). The QBO is the dominant
mode of the variability in the tropical stratosphere and is itself
highly predictable.® The QBO represents a downward propagat-
ing shift in the mean zonal winds in the equatorial stratosphere
from westerlies to easterlies and back again, with a period of ~2
years.'® A growing body of research suggests that the state of the
stratosphere, as represented by the QBO, influences the nature
and predictability of the MJO,"”'® as well as the MJO's associated
atmospheric teleconnections.'®'® For example, MJO activity
during boreal winter is generally higher in amplitude and slower
to propagate during the easterly phase of the QBO than during
the westerly phase.'”"'%"2! This modulation of the MJO by the QBO
can occur independent of the ENSO cycle.'®*' While the
physical processes responsible for the modulation of the MJO
by the QBO are still being investigated, the relationship appears to
be dominated by the regulation of the near-tropopause
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a Location of the Alaska (purple), British Columbia (BC; blue), Washington/Oregon (green), and California (CA; red) landfall boundaries

overlaying the daily mean integrated water vapor transport (IVT; shaded) from 20 February 2017. The black IVT vectors highlight an AR that
impacted the CA boundary on that date. b The seasonal cycle of AR frequency of occurrence for the BC (blue curve) and CA (red curve)
landfall boundaries, with the December-March (DJFM) period shaded

temperature and static stability and hence a modulation of
organized deep convection.'”?'

In this work, we construct and evaluate an empirical prediction
scheme targeting anomalous landfalling atmospheric river (AR)
activity along the west coast of North America. ARs are plumes of
intense tropospheric water vapor transport that often result in
weather and/or hydrologic extremes (e.g., heavy rainfall, flash
floods) upon landfall.>>">> Repeated landfalling ARs or a complete
lack thereof may result in periods of precipitation abundance or
drought for regions along the west coast of North America.?*?’
Several studies suggest the potential for skillful subseasonal
prediction based on observed relationships between the MJO and
AR activity.?* 732 Here, we show that knowledge of the state of the
MJO and the QBO can provide skillful predictions of anomalous AR
activity up to 5 weeks in advance during boreal winter months.
Because of the wide-ranging impacts associated with landfalling
ARs, myriad sectors of society may benefit from skillful predictions
of anomalous AR activity along the west coast of North America.

RESULTS

Atmospheric rivers (ARs) impact the west coast of North America
during every month of the year.3* However, regions along the
coast experience a pronounced seasonality in AR frequency of
occurrence that generally varies with latitude.®*** The landfall
boundaries used in this study, as identified in Fig. 1a, are no
exception. Figure 1b shows the seasonal cycle of landfalling ARs
near British Columbia (BC; blue) and California (CA; red) based on
ARs identified in the second modern-era retrospective analysis for
research and applications (MERRA-2) data set® (results for the
Alaska and Washington/Oregon landfall boundaries are provided
in the Supplementary Information). We focus our analysis on the
December through March (DJFM) period, as shaded in Fig. 1b,
when ARs frequently occur near both the British Columbia and
California landfall boundaries, when teleconnection patterns are
expected to be the most robust over the North Pacific, and when
the aforementioned MJO-QBO link has been observed. In Fig. 1b,
ARs occur at frequencies of ~12.4% and 11.5% of all days during
DJFM for the British Columbia and California boundaries,
respectively. Not shown is the substantial year-to-year variability
in AR occurrences**** indicating that landfalling ARs are also
influenced by longer time scale modes of variability such as the
ENSO cycle.

AR activity near these landfall boundaries not only varies on
seasonal and longer time scales, but also within the subseasonal
time scale. Here, we assess the modulation of AR activity following
periods when the MJO is active. The MJO is parsed into eight
phases that relate to the approximate location of the anomalous
convection associated with the MJO, according to the compo-
nents of the real-time multivariate MJO (RMM) index*® (Methods).
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Fig.2 Composite anomalous AR activity as a function of MJO phase
(y axis) and number of days after active MJO phase conditions (x
axis) in terms of anomalous frequency of occurrence (%, left range
of colorbar) and the change relative to the location’s mean DJFM AR
frequency (% change, right range of colorbar) for the (a) British
Columbia and (b) California landfall boundaries

Figure 2 depicts anomalous AR frequency of occurrence following
dates when the MJO is active in a given phase, based on the 36
DJFM seasons (1980-2016) within the MERRA-2 record. These
composite anomalies may also be thought of in terms of percent
change relative to the aforementioned 12.4% and 11.5% DJFM
mean AR frequencies for British Columbia and California,
respectively. As such, Fig. 2 reveals composite patterns of
anomalous AR activity following certain MJO phases that
approach, or even exceed, £50% of the seasonal AR frequency
of occurrence. The opposing anomaly patterns in Fig. 2 also
capture a tradeoff in AR activity between British Columbia and
California. For example, the increase in AR activity near British
Columbia ~2 weeks following MJO phase 2 contrasts with a
simultaneous decrease in activity near California (see also ref.>).

In addition to the modulation of AR activity following active
MJO periods, Fig. 2 captures some key characteristics of the MJO
and its extratropical response. For example, the angled, alternat-
ing pattern of anomalous AR activity captures the eastward
propagation of the canonical MJO signal. Additionally, Fig. 2
reveals that the maximum MJO-related impacts may take several
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Fig. 3 Heidke skill score (HSS) values as a function of MJO phase (y axis) and forecast lead time (x axis) for the British Columbia (left column)
and California (right column) landfall boundaries, (a, b) independent of the state of the QBO, as well as conditioned on (¢, d) EQBO and (e, f)
WQBO. Only conditional combinations where the HSS is positive are shaded. The shading is based on the dominant AR activity response:
decreased activity (oranges) or increased activity (greens). Statistical significance of the skill scores is denoted by the light gray diamonds
(>80th percentile) and dark gray squares (>90th percentile), based on 1000 block bootstrap samples (Methods)

days, or even weeks, to manifest, in agreement with the results of
earlier theoretical work.”?’ Notably, these patterns emerge
despite the high degree of variability (duration, strength,
evolution, and so on) within the underlying MJO events.

Despite the revealing patterns in Fig. 2, such an analysis does
not assess whether the modulation of AR activity following MJO
activity is of use in a predictive sense. Here, we develop an
empirical prediction scheme to evaluate the predictive potential
of the MJO-AR relationship. In this first version of the scheme, the
predictor is the initial state of the MJO, represented simply by the
numeric MJO phase on the date of forecast issuance. The
predictand is anomalous AR activity at some date in the future
(i.e., forecast lead) near a given landfall boundary. While others
have evaluated the ability of medium-range weather forecasts to
represent individual AR events,®® we target periods of AR activity
relative to the seasonal cycle and smoothed by a 5-day running
mean (Methods). This particular choice of predictand transforms
the transient, synoptic-scale nature of individual ARs into a
broader representation of the propensity of the large-scale flow
pattern to support anomalous AR activity (i.e, increased or
decreased activity relative to the seasonal climatology) and is a
more suitable target for subseasonal prediction.

Using a leave-one-out cross-validation training and verification
approach, we verify the prediction scheme on all DJFM dates for
forecast lead times spanning 2-36 days. Forecast leads are defined
as the number of days between the initial conditions (i.e., when
forecasts are made) and the verification dates (i.e., the dates for
which AR activity is forecast). Thus, MJO conditions as early as late
October are used as predictors. The Heidke skill score (HSS;
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Methods) is used to quantify the value added by this prediction
scheme. As constructed, the HSS ranges from —100 (no correct
forecasts) to 100 (all forecasts are correct), and HSS values >0
indicate conditions when the scheme adds value compared to a
climatological forecast.

Figure 3 depicts the skill of the empirical prediction scheme as a
function of MJO phase and forecast lead time for the British
Columbia and California landfall boundaries. The panels in Fig. 3 are
shaded where the HSS is positive, that is, where skill emerges from
this empirical prediction scheme (see Supplementary Fig. S6 for a
plot of the full range of scores comparable to Fig. 3a, b). The extent
of the shading in Fig. 3a, b reveals that the MJO-AR relationship
provides useful information within the subseasonal time scale
beyond a simple climatological forecast. For context, an HSS value
of 33 means that there are twice as many correct forecasts as
incorrect forecasts. The color of the shading in Fig. 3 relates to the
AR response, with orange shading for decreased AR activity and
green shading for increased AR activity. The skillful response
patterns in Fig. 3a, b share some similarities with the composite
patterns shown in Fig. 2. For example, the band of anomalously
high AR activity near British Columbia following MJO phases 1-6 in
Fig. 2a supports skillful predictions of increased AR activity
following the same phases in Fig. 3a. Additionally, the patterns of
skillful predictions suggest that the composites in Fig. 2 are not
dominated by just a few outlier events, but rather capture robust
shifts in AR activity due to the state of the MJO up to 5 weeks prior.

Inspired by recent work investigating the impacts of the QBO
on the MJO, we repeat our predictions but now include the phase
of the QBO as an additional predictor. In Fig. 3, panels c-f follow
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Fig. 4 Composites of anomalous integrated water vapor transport (IVT; shaded and arrows), positive 500 hPa geopotential height anomalies
(red contours), and negative 500 hPa geopotential height anomalies (blue contours) for (a) 18 days following DJFM MJO phase 1 dates during
EQBO conditions, (b) 18 days following MJO phase 1 dates during WQBO, (c) 12 days following MJO phase 5 dates during EQBO, and (d)
12 days following MJO phase 5 dates during WQBO. The British Columbia (blue) and California (red) landfall boundaries are overlaid

the format of a and b, but are parsed according to QBO phase:
easterly QBO (EQBO) and westerly QBO (WQBO). As an example,
the streak of statistically significant skill for increased AR activity
near British Columbia during EQBO conditions and 18-26 days
following MJO phase 1 (bottom row of Fig. 3c) indicates that given
the initial conditions of EQBO and active MJO phase 1, one should
expect an increase in AR activity relative to the seasonal
climatology ~3 weeks following. The skill metric suggests that
such a prediction of increased AR activity would be correct ~20
times out of 30. We also find that when the prediction scheme
adds value (HSS > 0), the skill is often higher with the addition of
the QBO as a predictor. While some of the general skill and
response patterns from the “QBO independent” panels remain
once parsed by QBO phase, it is apparent that the patterns of
anomalous AR activity in Fig. 3a, b are generally dominated by
different phases of the QBO. For example, the band of increased
AR activity near British Columbia 1-3 weeks following MJO phases
1-3 is most pronounced during EQBO conditions.

To learn more about the dynamics that contribute to the AR
response patterns shown in Fig. 3, we examine composites of
integrated water vapor transport (IVT) and 500 hPa geopotential
height anomalies over the North Pacific. The large-scale anomaly
patterns reveal conditions that act to influence AR activity near the
landfall boundaries. Perhaps not surprisingly, the more skillful the
prediction scheme (i.e., higher and more significant HSS), the more
coherent the associated anomaly patterns appear over the North
Pacific. For example, conditional composites for 18 days following
MJO phase 1 dates during EQBO and WQBO conditions are shown
in Fig. 4a, b, respectively. In Fig. 4a, a negative height anomaly
centered over mainland Alaska contrasts with a broad positive
height anomaly encompassing much of the North Pacific. These
anomaly patterns favor anomalously high AR activity near British
Columbia and low AR activity near California. The anomaly patterns
are less pronounced during WQBO conditions (Fig. 4b), but the
associated AR activity impacts are of the same sign regardless of
QBO phase. In contrast, ¢ and d of Fig. 4 show composite
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conditions for 12 days following MJO phase 5 dates with dissimilar
extratropical anomaly patterns when parsed by QBO phase and
with the composite anomaly pattern appearing substantially
weaker and less coherent in the EQBO phase. In both panels, the
composite height and IVT anomaly patterns are conducive for an
AR activity tradeoff between the two landfall boundaries.>* Overall,
the example composites shown in Fig. 4 highlight that the
anomalous AR response patterns (e.g., Fig. 3) are linked to the
large-scale modulation of the extratropical circulation.

A worthwhile question is how does the level of skill from this
empirical prediction scheme compare to the skill available from
numerical weather prediction models? To answer this question,
we evaluate a suite of 46-day European Centre for Medium-Range
Weather Forecasts (ECMWF) retrospective forecasts initialized
from 1995 to 2016.° As with the empirical method, we target 5-
day average anomalous AR activity for each landfall boundary.
Figure 5 shows the resulting HSS based on all verification dates in
DJFM as a function of forecast lead time for both the British
Columbia (blue) and California (red) landfall boundaries. The
ECMWEF ensemble prediction system shows skill initially; however,
the skill decreases to near zero at ~18 days. Thus, the model’s
subseasonal skill with this metric is roughly equivalent to a
climatological forecast beyond forecast lead times of 18 days. The
HSS values plotted in Fig. 5 are not parsed by MJO and QBO
phase; however, as shown in the Supplementary Figs. S10 and
S11, the results do not vary remarkably when the initial state of
the MJO and the QBO are considered. This brief assessment is not
intended to be a critique of this particular model, but rather to
provide a rough estimate of the ability of a current generation
numerical weather prediction model to predict anomalous AR
activity within the subseasonal time scale.

DISCUSSION

This study illuminates the predictive potential of the relationship
between anomalous landfalling AR activity along the west coast of
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Fig. 5 HSS values based on ECMWF reforecast predictions of
anomalous AR activity as a function of forecast lead time (x axis) for
the British Columbia (BC; blue) and California (CA; red) landfall
boundaries. Fine lines represent individual ensemble members and
the bold lines denote the mean skill of all ensemble members for
each region

North America and the state of the tropics up to 5 weeks prior.
Earlier works have documented an MJO-AR relationship in terms
of the modulation of AR occurrences®°~3? and their impacts,?® but
here we demonstrate that the time-lagged modulation of AR
activity by the extratropical response to the MJO can be leveraged
for skillful subseasonal forecasts. We further show that the
MJO-AR relationship is influenced by the QBO. Thus, the variability
of the MJO-AR relationship can be better understood and
predicted by also considering the state of the stratosphere.
Furthermore, key aspects of the skill and AR response patterns are
generally robust to the indices and thresholds used to characterize
the MJO and the QBO (Supplementary Information).

An empirical prediction scheme using the initial state of the
MJO and the QBO as predictors can support skillful subseasonal
“forecasts of opportunity.” As shown, during certain phase
combinations (i.e, MJO phase, QBO phase, and forecast lead)
the prediction scheme produces skill at forecast lead times of
2-5 weeks exceeding that of a state-of-the-art numerical weather
prediction model, when evaluated using a similarly-constructed
metric for above and below normal AR activity. Our scheme could
be operationalized in such a manner as to revert to climatology if
no additional skill can be expected, thus affording continuous
application to complement available numerical weather predic-
tion guidance. Furthermore, the method could be married with
predictions of the MJO itself, predictions that now show skill out
3-4 weeks in some dynamic models and situations.>*~*'

As ARs can trigger wide-ranging impacts, even modest gains in
the subseasonal prediction of these impactful features may
benefit numerous sectors of society. Also significant is the result
that the MJO-AR relationship is responsible for not only periods of
increased landfalling AR activity, but also periods of decreased
activity. Given the potential consequences of a lack of AR activity,
inactive periods may be just as viable and valuable a predictive
target as abnormally active periods. Whatever the response, this
study elucidates key relationships that contribute to the
subseasonal variability of these extreme events and support
skillful predictions thereof.

METHODS
Atmospheric river detection

ARs are identified using an updated version of an objective detection
algorithm (as documented in ref3?). The algorithm uses gridded fields of
positive anomalous vertically integrated water vapor transport (IVT),
together with a series of intensity and geometric tests (e.g, mean
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intensity, total area, length, length-to-width ratio), to identify features that
are of the appropriate spatial scale and are sufficiently plumelike in nature.
This detection algorithm employs an occurrence-based approach (i.e,, an
AR occurrence is recorded for each period during which the criteria are
satisfied), wherein each time step is scrutinized independently. As a result,
the calculations regarding AR “hits” described in this study are based on
the number of days during which AR-like conditions exist over a given
landfall boundary. The updated detection algorithm used in this study
does not contain the “multiple peak” logic that scrutinizes connected
features within fields of anomalous IVT. We find that the mid- and high-
latitude results are generally insensitive to the removal of this logic test.
The majority of the results presented in this work are based on this
detection algorithm applied to IVT calculated via the mass-weighted
vertical integration of component winds and specific humidity from
1000-250 hPa from MERRA-2.3° Daily means are calculated and the data
set is regridded to a 1.5°x 1.5° latitude-longitude grid before calculating
IVT. With this data set, a static anomalous IVT magnitude threshold of
~173kgm™" s7" is used to isolate features of interest. This value represents
the 94th percentile of the all-season distribution of daily IVT anomaly
values over the North Pacific Ocean. For the model skill comparison, this
AR detection scheme is also applied to gridded IVT anomalies calculated
from a set of retrospective forecasts from the ECMWF reforecast ensemble
prediction system.

Atmospheric river activity

To construct time series of anomalous AR activity along the landfall
boundaries, we first create a continuous time series of boolean AR “hits” for
each boundary by recording a hit whenever the spatial extent of any AR
feature overlaps at least one grid point of a given landfall boundary.
Second, we remove the seasonal cycle of AR activity by subtracting the
mean and first two harmonics calculated via fast Fourier transform applied
to the calendar-day means of each AR time series. Third, we apply a 5-day
running mean to each anomaly time series. Based on the premise that
subseasonal predictions are founded on the presence and modulation of
large-scale circulation anomalies, the running mean transitions the time
series from representing only individual transient hits to capturing the
larger-scale propensity of the anomalous flow pattern to influence the
landfalling activity. The resulting time series are used to create the
conditional composites for Fig. 2 and to train and verify the prediction
scheme described throughout this work.

Predictors

Two potential sources of subseasonal predictability are used as initial
conditions for the prediction scheme: the MJO and the QBO. We
characterize the MJO according to the strength and location of the
enhanced near-equatorial convection and the associated anomalous
circulation, as determined by the components of the RMM index.3® This
MJO index is a combination of two component indices, RMM1 and RMM2,
representing the two leading principal components from a multivariate
(equatorially averaged tropical outgoing longwave radiation and 200- and
850-hPa zonal winds) empirical orthogonal function analysis. When
combined and considered in terms of their two-dimensional phase space,
these component indices provide daily phase (1-8) and amplitude values
(see ref3%). We consider the MJO as active when the amplitude meets or
exceeds a value of one and also apply the basic logic test that the index
must remain in that phase (e.g., location of active MJO signal) for at least
two, but less than 20, days. See the Supplementary Information for
alternative characterizations of the MJO (e.g., different index or more
stringent phase event criteria). The QBO is characterized by the
standardized monthly 50-hPa zonal wind index provided by the National
Oceanic and Atmospheric Administration (NOAA) National Weather Service
(NWS) Climate Prediction Center (CPC). We apply this index as a continuous
time series, such that all months within the period of record are
categorized as either EQBO (monthly mean standardized anomaly < 0) or
WQBO (>0). We show the impact of introducing a more restrictive anomaly
threshold, which has the possible effect of bolstering the prediction
scheme, but also reducing the number of conditional samples, in the
Supplementary Fig. S13. The QBO is not considered alone based on the
presumption that the influence of the QBO on anomalous AR activity will
primarily manifest via the modulation of the MJO’s convection and its
ability to elicit an extratropical response. Hence, the predictors investi-
gated in this study are simply the daily MJO phase (1-8) and the monthly
QBO phase (EQBO or WQBO).

npj Climate and Atmospheric Science (2018) 20177
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Empirical prediction

We generate a two-class prediction scheme from the DJFM AR anomaly
time series for each region; that is, we assess the probability of being
above and the probability of being below an “equal chances” 50th
percentile of the time series, given the initial state of the MJO and the QBO.
As constructed, the probability of being above (increased AR activity) and
below (decreased AR activity) are equal when all verification dates in DJFM
are considered. However, the probability distribution may shift as a
function of MJO phase, QBO phase, and forecast lead. For the example
shown in Supplementary Fig. S5, the distribution of 5-day average
anomalous AR activity near British Columbia is shifted toward higher
values 18 days following MJO phase 1 dates during EQBO conditions,
relative to the mean DJFM distribution. As a result, given the initial
conditions of MJO phase 1 and EQBO, the empirical scheme will predict
increased AR activity for the British Columbia landfall boundary around
18 days following these initial conditions. In evaluating the two-class
scheme, a prediction is considered correct when the observed response, in
terms of above or below the 50th percentile threshold, from the 5-day
running mean of the independent verification time series matches the
predicted response; the prediction is considered incorrect otherwise. As
illustrated by this example, the predictors are not explicitly weighted as
they may be in a scheme based on some form of regression; in contrast,
the predictors (MJO phase and QBO phase) are simply used to parse the
training data in order to assess the conditional shift in the likelihood of
increased or decreased AR activity relative to seasonal climatology. Though
the results presented herein are based on the use of a single DJFM 50th
percentile threshold, we find that the overarching conclusions (time-
lagged response, patterns of increased/decreased AR activity, and so on)
remain even if the threshold is allowed to vary by day-of-season. We use a
leave-one-out cross-validation approach to conditionally construct and
evaluate this prediction scheme.*? Specifically, the verification statistics for
a given season are based on distributions constructed from historical AR
activity parsed by phase of the MJO and the QBO for all DJFM seasons
excluding the one “left out” verification season, ensuring independence of
the verification subset. As a given season is left out, we use the training
data to generate forecasts for all 121 days within the left out season and
for all possible forecast leads. In so doing, we perform this leave-one-out
procedure 36 times, each time leaving out just one DJFM season from the
available MERRA-2 record. Because the training periods differ during the
leave-one-out process, the 50th percentile threshold is recalculated each
time; however, the threshold value is nearly unchanged throughout the
cross-validation. The output of the cross-validation procedure is the
number of correct and incorrect predictions parsed by initial conditions
and forecast lead times.

Skill assessment

The skill of the prediction scheme is evaluated using the HSS, a measure of
the proportion of correct forecasts.'>*> The HSS is calculated as:

(H-F)
(T-6)

where H is the number of correct forecasts, T is the total number of
forecasts evaluated, and E is the number of correct forecasts expected by
chance (7/2 in this two-class scenario). With the multiplication by 100, the
two-class HSS ranges from —100 to 100. A set of perfect forecasts garners a
HSS of 100, forecasts equivalent to the reference forecast (i.e., climatology)
score 0, and forecasts less skillful than the reference forecast receive
negative scores. The HSS values may be interpreted in terms of value
added relative to a climatological reference forecast. For example, a HSS of
33 indicates twice as many correct forecasts as incorrect forecasts and a
skill score of 50 indicates three times as many correct as incorrect forecasts;
whereas, the reference forecast with a skill score of 0 indicates an equal
number of correct and incorrect forecasts.

HSS = x 100, M

Significance of skill

A block bootstrapping approach is used to assess the statistical
significance of the HSS values. For every conditional combination (i.e.,
MJO phase, QBO phase, and forecast lead), we generate a distribution of
1000 skill score values by randomly reassigning the calendar year and
shifting the day-of-year indices of the “blocks” of the occurrences of the
conditional data. We then perform the verification calculations on the
random data in order to construct a distribution of resampled HSS values
against which the actual conditional HSS may be compared. In doing so,
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each block bootstrap sample retains the sample size and potential
autocorrelation associated with the conditional data.

Atmospheric river response assessment

For Fig. 3 and the associated discussion, we aim to not only communicate
the skill within the prediction scheme, but also characterize the conditional
AR response. To achieve this, we evaluate the shift in the probability of
above and below normal AR activity for each conditional combination
throughout the leave-one-out training and verification process. For
example, if a given MJO phase, QBO phase, and forecast lead combination
consistently produces a probability of above normal AR activity greater
than the probability of below normal activity, we record the condition as
resulting in above normal, or increased, AR activity and shade the
combination green in Fig. 3.

Model skill comparison

In order to provide a numerical weather prediction skill benchmark, we
calculate HSS values for a set of 46-day ECMWF retrospective forecasts
from 1995 to 2016. The ECMWF reforecast ensemble prediction system
data set consists of 11 members (1 control and 10 perturbed) that are
created “on-the-fly.” That is to say that the database is comprised of output
from different versions of the ECMWF model, as reforecasts are produced
progressively as the the operational model is updated? We obtain
instantaneous 0000 UTC variables on a 1.5°x 1.5° latitude-longitude grid,
from which we calculate IVT and identify AR-like features. We use the first
7 days from every available control run reforecast to calculate calendar-day
means from which we calculate the seasonal cycle via fast Fourier
transform. Time series of anomalous AR activity are created for each
ensemble member's reforecasts by removing the control run’s seasonal
cycle and applying a 5-day running mean. The 50th percentile threshold
used to evaluate AR activity is based on anomalies from the control run,
subset for the boreal winter. Each member is evaluated separately and for
all verification dates within DJFM. Following this approach, 1919
reforecasts are used.

Data availability

MERRA-2 data were obtained from the NASA Goddard Earth Sciences Data
and Information Services Center (https://disc.gsfc.nasa.gov/). ECMWF
reforecast ensemble system output was acquired from the World Weather
Research Programme/World Climate Research Programme Subseasonal-to-
Seasonal Prediction Project database® (http://apps.ecmwf.int/datasets/
data/s2s/). The QBO index was provided by the NOAA NWS CPC (http://
www.cpc.ncep.noaa.gov/data/indices/gbo.u50.index). MJO indices were
obtained from the Australian Bureau of Meteorology (http://www.bom.
gov.au/climate/mjo/) and NOAA Earth System Research Laboratory
(https://www.esrl.noaa.gov/psd/mjo/mjoindex/).
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